Mercurial > repos > recetox > matchms
view matchms_wrapper.py @ 1:4aecfd6b319b draft
"planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/matchms commit d110cb008c3703945fe3718465de36278fa34652"
author | recetox |
---|---|
date | Wed, 17 Mar 2021 11:40:17 +0000 |
parents | 6a736abe431f |
children | a7c9fc186f8c |
line wrap: on
line source
import argparse import sys from matchms import calculate_scores from matchms.importing import load_from_msp from matchms.similarity import ( CosineGreedy, CosineHungarian, FingerprintSimilarity, IntersectMz, ModifiedCosine, ParentMassMatch ) from pandas import DataFrame def main(argv): parser = argparse.ArgumentParser(description="Compute MSP similarity scores") parser.add_argument( "references_filename", type=str, help="Path to reference MSP library." ) parser.add_argument("queries_filename", type=str, help="Path to query spectra.") parser.add_argument("similarity_metric", type=str, help='Metric to use for matching.') parser.add_argument("output_filename_scores", type=str, help="Path where to store the output .csv scores.") parser.add_argument("output_filename_matches", type=str, help="Path where to store the output .csv matches.") args = parser.parse_args() if args.similarity_metric == 'CosineGreedy': similarity_metric = CosineGreedy() elif args.similarity_metric == 'CosineHungarian': similarity_metric = CosineHungarian() elif args.similarity_metric == 'FingerprintSimilarity': similarity_metric = FingerprintSimilarity() elif args.similarity_metric == 'IntersectMz': similarity_metric = IntersectMz() elif args.similarity_metric == 'ModifiedCosine': similarity_metric = ModifiedCosine() else: similarity_metric = ParentMassMatch() reference_spectra = [ spectrum for spectrum in load_from_msp(args.references_filename) ] queries_spectra = [spectrum for spectrum in load_from_msp(args.queries_filename)] scores = calculate_scores( references=reference_spectra, queries=queries_spectra, similarity_function=similarity_metric, ) query_names = [spectra.metadata['name'] for spectra in scores.queries] reference_names = [spectra.metadata['name'] for spectra in scores.references] # Write scores to dataframe dataframe_scores = DataFrame(data=[entry["score"] for entry in scores.scores], index=reference_names, columns=query_names) dataframe_scores.to_csv(args.output_filename_scores, sep=';') # Write number of matches to dataframe dataframe_matches = DataFrame(data=[entry["matches"] for entry in scores.scores], index=reference_names, columns=query_names) dataframe_matches.to_csv(args.output_filename_matches, sep=';') return 0 if __name__ == "__main__": main(argv=sys.argv[1:]) pass