Mercurial > repos > recetox > matchms
view matchms_wrapper.py @ 7:4571641de47a draft
"planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/matchms commit 845bb7e13e793df5b61b42962ab2df2c6339ac8c"
author | recetox |
---|---|
date | Tue, 26 Oct 2021 14:24:58 +0000 |
parents | 672c22d7f004 |
children | f06923bdd2f2 |
line wrap: on
line source
import argparse import sys from matchms import calculate_scores from matchms.filtering import add_precursor_mz, default_filters, normalize_intensities from matchms.importing import load_from_msp from matchms.similarity import ( CosineGreedy, CosineHungarian, ModifiedCosine, ) from pandas import DataFrame def main(argv): parser = argparse.ArgumentParser(description="Compute MSP similarity scores") parser.add_argument("-f", dest="default_filters", action='store_true', help="Apply default filters") parser.add_argument("-n", dest="normalize_intensities", action='store_true', help="Normalize intensities.") parser.add_argument("-s", dest="symmetric", action='store_true', help="Computation is symmetric.") parser.add_argument("--ref", dest="references_filename", type=str, help="Path to reference MSP library.") parser.add_argument("queries_filename", type=str, help="Path to query spectra.") parser.add_argument("similarity_metric", type=str, help='Metric to use for matching.') parser.add_argument("tolerance", type=float, help="Tolerance to use for peak matching.") parser.add_argument("mz_power", type=float, help="The power to raise mz to in the cosine function.") parser.add_argument("intensity_power", type=float, help="The power to raise intensity to in the cosine function.") parser.add_argument("output_filename_scores", type=str, help="Path where to store the output .csv scores.") parser.add_argument("output_filename_matches", type=str, help="Path where to store the output .csv matches.") args = parser.parse_args() queries_spectra = list(load_from_msp(args.queries_filename)) if args.symmetric: reference_spectra = [] else: reference_spectra = list(load_from_msp(args.references_filename)) if args.default_filters is True: print("Applying default filters...") queries_spectra = list(map(default_filters, queries_spectra)) reference_spectra = list(map(default_filters, reference_spectra)) if args.normalize_intensities is True: print("Normalizing intensities...") queries_spectra = list(map(normalize_intensities, queries_spectra)) reference_spectra = list(map(normalize_intensities, reference_spectra)) if args.similarity_metric == 'CosineGreedy': similarity_metric = CosineGreedy(args.tolerance, args.mz_power, args.intensity_power) elif args.similarity_metric == 'CosineHungarian': similarity_metric = CosineHungarian(args.tolerance, args.mz_power, args.intensity_power) elif args.similarity_metric == 'ModifiedCosine': similarity_metric = ModifiedCosine(args.tolerance, args.mz_power, args.intensity_power) reference_spectra = list(map(add_precursor_mz, reference_spectra)) queries_spectra = list(map(add_precursor_mz, queries_spectra)) else: return -1 print("Calculating scores...") scores = calculate_scores( references=queries_spectra if args.symmetric else reference_spectra, queries=queries_spectra, similarity_function=similarity_metric, is_symmetric=args.symmetric ) write_outputs(args, scores) return 0 def write_outputs(args, scores): print("Storing outputs...") query_names = [spectra.metadata['name'] for spectra in scores.queries] reference_names = [spectra.metadata['name'] for spectra in scores.references] # Write scores to dataframe dataframe_scores = DataFrame(data=[entry["score"] for entry in scores.scores], index=reference_names, columns=query_names) dataframe_scores.to_csv(args.output_filename_scores, sep='\t') # Write number of matches to dataframe dataframe_matches = DataFrame(data=[entry["matches"] for entry in scores.scores], index=reference_names, columns=query_names) dataframe_matches.to_csv(args.output_filename_matches, sep='\t') if __name__ == "__main__": main(argv=sys.argv[1:]) pass