Mercurial > repos > recetox > aplcms_hybrid
view aplcms_hybrid.xml @ 1:87f5cf0baf34 draft
"planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/aplcms commit 903de3d3bbc57ae9897fa4eea3636e27f67cbdb3"
| author | recetox |
|---|---|
| date | Tue, 26 Jan 2021 17:11:11 +0000 |
| parents | d3d9ba599d51 |
| children | a1439454fe7f |
line wrap: on
line source
<tool id="aplcms_hybrid" name="apLCMS - Hybrid" version="@TOOL_VERSION@+galaxy2"> <macros> <import>aplcms_macros.xml</import> </macros> <expand macro="requirements" /> <command detect_errors="aggressive"><![CDATA[ #set file_str = str("', '").join([str($f) for $f in $files]) Rscript -e "x <- apLCMS::hybrid( files = c('$file_str'), known_table = apLCMS::load_known_table_from_hdf('$known_table'), min_exp = $noise_filtering.min_exp, min_pres = $noise_filtering.min_pres, min_run = $noise_filtering.min_run, mz_tol = $noise_filtering.mz_tol, baseline_correct = $noise_filtering.baseline_correct, baseline_correct_noise_percentile = $noise_filtering.baseline_correct_noise_percentile, intensity_weighted = $noise_filtering.intensity_weighted, shape_model = '$feature_detection.shape_model', BIC_factor = $feature_detection.BIC_factor, peak_estim_method = '$feature_detection.peak_estim_method', min_bandwidth = $feature_detection.min_bandwidth, max_bandwidth = $feature_detection.max_bandwidth, sd_cut = c($feature_detection.sd_cut_min, $feature_detection.sd_cut_max), sigma_ratio_lim = c($feature_detection.sigma_ratio_lim_min, $feature_detection.sigma_ratio_lim_max), component_eliminate = $feature_detection.component_eliminate, moment_power = $feature_detection.moment_power, align_chr_tol = $peak_alignment.align_chr_tol, align_mz_tol = $peak_alignment.align_mz_tol, max_align_mz_diff = $peak_alignment.max_align_mz_diff, match_tol_ppm = $history_db.match_tol_ppm, new_feature_min_count = $history_db.new_feature_min_count, recover_mz_range = $weak_signal_recovery.recover_mz_range, recover_chr_range = $weak_signal_recovery.recover_chr_range, use_observed_range = $weak_signal_recovery.use_observed_range, recover_min_count = $weak_signal_recovery.recover_min_count, cluster = as.integer(\${GALAXY_SLOTS:-1}) )" -e "apLCMS::save_peaks_to_hdf('$peaks', x)" -e "apLCMS::save_known_table_to_hdf('$updated_known_table', x\\$updated_known_table)" ## NOTE the double \\ because we want cheetah and bash to ignore the $ character ]]></command> <expand macro="inputs"> <expand macro="history_db" /> <expand macro="noise_filtering" /> <expand macro="feature_detection" /> <expand macro="peak_alignment" /> <expand macro="weak_signal_recovery" /> </expand> <outputs> <data name="peaks" format="h5" /> <data name="updated_known_table" format="h5" /> </outputs> <tests> <test> <param name="files" value="mbr_test0.mzml,mbr_test1.mzml,mbr_test2.mzml" ftype="mzml"/> <param name="known_table" value="known_table.h5" ftype="h5"/> <output name="peaks" file="peaks_hybrid.h5" ftype="h5" compare="sim_size" delta="1000"/> </test> </tests> <help> This is the Hybrid version of apLCMS which is incorporating the knowledge of known metabolites and historically detected features on the same machinery to help detect and quantify lower-intensity peaks. CAUTION: To use such knowledge, especially historical data, you must keep using (1) the same chromatography system (otherwise the retention time will not match), and (2) the same type of samples with similar extraction technique, such as human serum. @GENERAL_HELP@ </help> <expand macro="citations" /> </tool>
