Mercurial > repos > petrn > repeatexplorer
view config.py @ 6:2925751ed586 draft
Uploaded
author | petrn |
---|---|
date | Fri, 20 Dec 2019 12:59:39 +0000 |
parents | f6ebec6e235e |
children |
line wrap: on
line source
''' All configuration for clustering ''' import os import tempfile from math import exp from collections import namedtuple MAIN_DIR = os.path.dirname(os.path.realpath(__file__)) def add_base_path(base): '''automates generating absolute path in config''' def joined_path(p): '''create absolute path function ''' return os.path.join(base, p) return joined_path PATH = add_base_path(MAIN_DIR) # clustering general settings DIRECTORY_TREE = {'libdir': 'libdir', 'seqclust': 'seqclust', 'assembly': 'seqclust/small_clusters_assembly', 'blastx': 'seqclust/blastx', 'clustering': 'seqclust/clustering', 'clusters': 'seqclust/clustering/clusters', 'superclusters': 'seqclust/clustering/superclusters', 'mgblast': 'seqclust/mgblast', 'blastn': 'seqclust/blastn', 'prerun': 'seqclust/prerun', 'prerun_clusters': 'seqclust/prerun/clusters', 'sequences': 'seqclust/reads', 'custom_databases': 'seqclust/custom_databases'} if "TEMP" in os.environ: DIRECTORY_TREE['TEMP'] = os.environ["TEMP"] else: DIRECTORY_TREE['TEMP'] = tempfile.TemporaryDirectory().name FILES = {'sample_db': DIRECTORY_TREE['TEMP'] + "/sample.db", 'sample_fasta': DIRECTORY_TREE['prerun'] + "/sample.fasta", 'prerun_cls_file' : DIRECTORY_TREE['prerun'] + "/sample_hitsort.cls", 'filter_sequences_file' : DIRECTORY_TREE['prerun'] + "/filter_sequences.fasta", 'sequences_db': DIRECTORY_TREE['TEMP'] + "/sequences.db", 'sequences_fasta': DIRECTORY_TREE['sequences'] + "/reads.fasta", 'hitsort': DIRECTORY_TREE['clustering'] + "/hitsort", 'hitsort_db': DIRECTORY_TREE['TEMP'] + "/hitsort.db", 'cls_file': DIRECTORY_TREE['clustering'] + "/hitsort.cls", 'clusters_summary_csv': "CLUSTER_TABLE.csv", 'profrep_classification_csv': "PROFREP_CLASSIFICATION_TEMPLATE.csv", 'superclusters_csv_summary': "SUPERCLUSTER_TABLE.csv", 'comparative_analysis_counts_csv': "COMPARATIVE_ANALYSIS_COUNTS.csv", 'clusters_info': ".clusters_info.csv", 'tarean_report_html': "tarean_report.html", 'cluster_report_html' : "cluster_report.html", 'supercluster_report_html' : 'supercluster_report.html', 'repeat_annotation_summary_rds' : 'repeat_annotation_summary.rds', 'summarized_annotation_html' :'summarized_annotation.html', 'main_report_html' : 'index.html', 'TR_consensus_fasta': "TAREAN_consensus_rank_{}.fasta", 'summary_histogram' : 'summary_histogram.png', 'comparative_summary_map': 'comparative_summary.png', "how_to_cite" : "HOW_TO_CITE.html", 'logfile' : "logfile.txt", 'contigs' : "contigs.fasta", 'filter_omitted' : DIRECTORY_TREE['sequences'] + "/removed_filtering_positive_reads.fasta", 'filter_kept' : DIRECTORY_TREE['sequences'] + "/kept_filtering_positive_reads.fasta" } # include in output- [source, destination] INCLUDE = [ [PATH("HOW_TO_CITE.html"), FILES["how_to_cite"]] ] # this is attribute of path - not a file name! FILES_TO_DISCARD_AT_CLEANUP = [ 'prerun', 'mgblast', 'blastn', "blastx", 'hitsort', "repeat_annotation_summary_rds" ] # relative links for html files HTML_LINKS = { "CLUSTER_TO_SUPERCLUSTER" : "../../superclusters/dir_SC%04d/index.html", "SUPERCLUSTER_TO_CLUSTER" : "../../clusters/dir_CL%04d/index.html", "CLUSTER_TO_CLUSTER" : "../dir_CL%04d/index.html", "SUPERCLUSTER_TO_SUPERCLUSTER" : "../dir_SC%04d/index.html", "CLUSTER_TO_CLUSTER_TABLE" : "../../../../cluster_report.html", "SEPERCLUSTER_TO_CLUSTER_TABLE" : "../../../../cluster_report.html", "ROOT_TO_CLUSTER" : "seqclust/clustering/clusters/dir_CL%04d/index.html", "ROOT_TO_SUPERCLUSTER" : "seqclust/clustering/superclusters/dir_SC%04d/index.html", "ROOT_TO_TAREAN" : "seqclust/clustering/clusters/dir_CL%04d/tarean/report.html", "CLUSTER_TO_KMER_REPORT" : "tarean/report.html", "INDEX_TO_TAREAN": "tarean_report.html", "INDEX_TO_CLUSTER_REPORT": "cluster_report.html", "INDEX_TO_SUPERCLUSTER_REPORT" : "supercluster_report.html", "INDEX_TO_SUMMARIZED_ANNOTATION" : "summarized_annotation.html" } EMAX = 42.6 # define how many graph edges can be processed in 1Kb RAM # MINIMUM_NUMBER_OF_INPUT_SEQUENCES = 5000 # FOR TESTING: MINIMUM_NUMBER_OF_INPUT_SEQUENCES = 1000 MINIMUM_NUMBER_OF_READS_IN_CLUSTER = 20 # smaller clusters are not analyzed MINIMUM_NUMBER_OF_READS_FOR_MERGING = 20 # smaller clusters will not be merged MINIMUM_NUMBER_OF_SHARED_PAIRS_FOR_MERGING = 20 # min size of W param NUMBER_OF_SEQUENCES_FOR_PRERUN_WITH_FILTERING = 50000 NUMBER_OF_SEQUENCES_FOR_PRERUN_WITHOUT_FILTERING = 20000 NUMBER_OF_SEQUENCES_FOR_PRERUN = NUMBER_OF_SEQUENCES_FOR_PRERUN_WITHOUT_FILTERING CHUNK_SIZE = 20000 CLUSTER_EMAX = 2E7 # this parameter higle affect memory usage! CLUSTER_VMAX = 40000 SUPERCLUSTER_THRESHOLD = 0.1 # Number of processors to use - it will be set at runtime PROC = None RSERVE_PORT = 6311 #some settings related to repeats annotation ORF_THRESHOLD = 1200 PBS_THRESHOLD = 2 # threshold for rDNA detection - percentage of similarity hits RDNA_THRESHOLD = 20 # threshold for contamination detection CONTAMINATION_THRESHOLD = 10 # tandem ranks codes: # 1 : putative tandem repeats - high confidence # 2 : putative tandem repeats - low confidence # 3 : potential LTR element # 4 : rDNA TANDEM_RANKS = [1, 2, 3, 4] SKIP_CAP3_ASSEMBLY_TANDEM_RANKS = [1] FILTER_MIN_PROP_THRESHOLD = 0.03 # this is minimal proportion of graph edges! FILTER_MIN_SIZE_THRESHOLD = 1000 # minimal size of the cluster to be consider for filtering FILTER_PROPORTION_OF_KEPT = 0.1 R = 'lib' # external scripts RSOURCE_tarean = PATH('lib/tarean/tarean.R') RSOURCE_reporting = PATH('lib/reporting.R') RSOURCE_create_annotation = PATH('lib/create_annotation.R') LTR_DETECTION = PATH("lib/detect_LTR_insertion_sites.pl") #PATH to DATABASES: DNA_DATABASE = PATH("databases/dna_database_masked.fasta") TRNA_DATABASE = PATH("databases/tRNA_database.fasta") SATELLITE_MODEL = PATH("databases/satellite_model.rds") LASTAL_PARAMS = PATH("databases/lastal_params") # for testing PROTEIN_DATABASE = None CLASSIFICATION_HIERARCHY = None CUSTOM_DNA_DATABASE = None # when modifying this section check if makefile has most recent target for protein database PROTEIN_DATABASE_DEFAULT = "VIRIDIPLANTAE3.0" PROTEIN_DATABASE_OPTIONS = {'VIRIDIPLANTAE3.0' : (PATH("databases/protein_database_viridiplantae_v3.0.fasta"), # change according if you use custom protein database PATH("databases/classification_tree_viridiplantae_v3.0.rds")), # classification schem - data.tree object 'VIRIDIPLANTAE2.2' : (PATH("databases/protein_database_viridiplantae_v2.2.fasta"), # change according if you use custom protein database PATH("databases/classification_viridiplantae_tree.rds")), # classification schem - data.tree object 'METAZOA2.0' : (PATH("databases/protein_database_metazoa_v3.fasta"), # change according if you use custom protein database PATH("databases/classification_tree_metazoa_v3.rds")), # classification schem - data.tree object 'METAZOA3.0' : (PATH("databases/protein_database_metazoa_v3.fasta"), # change according if you use custom protein database PATH("databases/classification_tree_metazoa_v3.rds")) # classification schem - data.tree object } # if you change PROTEIN_DATABASE_OPTIONS, do not forget to use 'makeblastdb' build blast database # and 'diamond makedb' to build diamond database # PATH to binaries LOUVAIN = PATH("louvain") BINARIES = PATH("bin") CAP3_PATTERNS_REPLACE = {"{}.{}.contigs" : [">Contig", ">{}Contig"], "{}.{}.aln" : ["* Contig", "* {}Contig"], "{}.{}.contigs.qual" : [">Contig", ">{}Contig"], "{}.{}.ace" : ["CO Contig", "CO {}Contig"], "{}.{}.singlets" : None, "{}.{}.info" : None, "{}.{}.contigs.links" : None} CAP3_FILES_MAPPING = {"{}.{}.contigs" : "small_clusters.fasta", "{}.{}.contigs.qual" : "small_clusters.contigs.qual", "{}.{}.aln" : "small_clusters.aln", "{}.{}.ace" : "small_clusters.ace", "{}.{}.singlets" : None, "{}.{}.info" : None, "{}.{}.contigs.links" : None} CAP3_FILENAMES = list(CAP3_PATTERNS_REPLACE.keys()) CAP3_FILES_GOODNAMES = {"{}.{}.contigs" : "contigs.fasta", "{}.{}.contigs.qual" : "contigs.qual", "{}.{}.aln" : "contigs.aln", "{}.{}.ace" : "contigs.ace", "{}.{}.singlets" : "singlets.fasta", "{}.{}.info" : "assembly.info", "{}.{}.contigs.links" : "contigs.links"} CAP3_PARAMS = " -p 80 -o 40 " ## not implemented yet LTR_DETECTION_FILES = {'ADJ': 'LTR_info.ADJ', 'LTR': 'LTR_info.LTR', 'PBS_BLAST': 'LTR_info.with_PBS_blast.csv', 'BASE' : 'LTR_info'} # options for all-2-all search and annotations FilteringThreshod = namedtuple("FilteringThreshold", "min_lcov min_pid min_ovl min_scov evalue") AnnotationParams = namedtuple("AnnotationParams", "blastn blastx blastn_trna") Option = namedtuple('Options', ('name database all2all_search_params filtering_threshold ' 'filter_self_hits legacy_database lastdb annotation_search_params')) # protein domain search options: DIAMOND = { 'args': ' -p {max_proc} --max-target-seqs 1 --min-score 30 --freq-sd 1000 --more-sensitive', 'output_columns' : "qseqid sseqid qlen slen length ppos bitscore", 'column_types' : [str, str, float, float, float, float, float], 'program': 'diamond blastx', 'filter_function' : lambda x: x.bitscore >= 30, 'parallelize' : False } BLASTX_W3 = { 'args': ' -num_alignments 1 -word_size 2 -evalue 0.01 ', 'output_columns' : "qseqid sseqid qlen slen length ppos bitscore", 'column_types' : [str, str, float, float, float, float, float], 'program': 'blastx', 'filter_function' : lambda x: x.bitscore >= 33 } BLASTX_W2 = BLASTX_W3 BLASTX_W2['args'] = ' -num_alignments 1 -word_size 3 -evalue 0.01 ' ARGS = None ILLUMINA = Option( name="illumina", database='blastdb_legacy', all2all_search_params=('mgblast -p 75 -W18 -UT -X40 -KT -JF -F ' '"m D" -v100000000 -b100000000' ' -D4 -C 30 -H 30 -i {query} -d {blastdb}'), filtering_threshold=FilteringThreshod(55, 90, 0, 0, 1), filter_self_hits=False, legacy_database=True, lastdb=False, annotation_search_params=AnnotationParams( blastn={ 'args': ' -task blastn -num_alignments 1 -evalue 0.01 ', 'output_columns' : "qseqid sseqid qlen slen length ppos bitscore", 'column_types' : [str, str, float, float, float, float, float], 'program': 'blastn', 'filter_function' : lambda x: x.length > 30 and x.bitscore > 60 }, blastx=BLASTX_W3, blastn_trna={ 'args': ' -task blastn -num_alignments 1 -word_size 7', 'output_columns' : "qseqid sseqid qlen slen length ppos bitscore", 'column_types' : [str, str, float, float, float, float, float], 'program': 'blastn', 'filter_function' : lambda x: x.length > 18 and x.bitscore > 60 } ) ) ILLUMINA_DUST_OFF = ILLUMINA._replace( all2all_search_params=('mgblast -p 75 -W18 -UT -X40 -KT -JF -F ' 'F -v100000000 -b100000000' ' -D4 -C 30 -H 30 -i {query} -d {blastdb}'), ) ILLUMINA_SHORT = ILLUMINA._replace( name="illumina_short", all2all_search_params=('mgblast -p 75 -W18 -UT -X40 -KT -JF -F ' '"m D" -v100000000 -b100000000' ' -D4 -C 20 -H 30 -i {query} -d {blastdb}'), filtering_threshold=FilteringThreshod(40, 90, 0, 0, 0.1) ) OXFORD_NANOPORE = Option( name="oxford_nanopore", database='lastdb', all2all_search_params=('last_wrapper.py -f blasttab+ -P1 ' ' -m 700 -p {} ' ' {{blastdb}} {{query}} ').format(LASTAL_PARAMS), filtering_threshold=FilteringThreshod(40, 50, 0, 0, 0.01), filter_self_hits=True, legacy_database=False, lastdb=True, annotation_search_params=AnnotationParams( blastn={ 'args': ' -task blastn -num_alignments 1 -evalue 0.01 -word_size 11', 'output_columns' : "qseqid sseqid qlen slen length ppos bitscore", 'column_types' : [str, str, float, float, float, float, float], 'program': 'blastn', 'filter_function' : lambda x: x.length > 30 and x.bitscore > 50 }, blastx={ 'args': ' -num_alignments 1 -word_size 2 -evalue 0.1', 'output_columns' : "qseqid sseqid qlen slen length ppos bitscore", 'column_types' : [str, str, float, float, float, float, float], 'program': 'blastx', 'filter_function' : lambda x: x.bitscore >= 30 }, blastn_trna={ 'args': ' -task blastn -num_alignments 1 -word_size 7', 'output_columns' : "qseqid sseqid qlen slen length ppos bitscore", 'column_types' : [str, str, float, float, float, float, float], 'program': 'blastn', 'filter_function' : lambda x: x.length > 18 and x.length > 60 } ) )