Mercurial > repos > petrn > repeatexplorer
comparison seqclust @ 8:3bc73f5dc785 draft
Uploaded
author | petrn |
---|---|
date | Fri, 20 Dec 2019 14:17:59 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
7:c56807be3b72 | 8:3bc73f5dc785 |
---|---|
1 #!/usr/bin/env python3 | |
2 ''' TAndem REpeat ANalyzer ''' | |
3 import os | |
4 import sys | |
5 import shutil | |
6 import subprocess | |
7 import argparse | |
8 from argparse import RawTextHelpFormatter | |
9 import logging | |
10 import shlex | |
11 import multiprocessing | |
12 # config must be loaded before seqtools,... | |
13 import config | |
14 import re | |
15 from lib import seqtools, graphtools, utils, assembly_tools | |
16 from lib import r2py | |
17 | |
18 REQUIRED_VERSION = (3, 4) | |
19 if sys.version_info < REQUIRED_VERSION: | |
20 raise Exception("\n\npython 3.4 or higher is required!\n") | |
21 | |
22 # append path to louvain clustering and other binaries | |
23 os.environ['PATH'] = "{}:{}:{}".format(config.BINARIES, config.LOUVAIN, | |
24 os.environ['PATH']) | |
25 | |
26 LOGGER = logging.getLogger(__name__) | |
27 | |
28 | |
29 def get_version(path, tarean_mode): | |
30 # get git version | |
31 branch = "?" | |
32 shorthash = "?" | |
33 revcount = "?" | |
34 tag = "?" | |
35 try: | |
36 branch = subprocess.check_output("git rev-parse --abbrev-ref HEAD", | |
37 shell=True, | |
38 cwd=path).decode('ascii').strip() | |
39 shorthash = subprocess.check_output( | |
40 "git log --pretty=format:'%h' -n 1 ", | |
41 shell=True, | |
42 cwd=path).decode('ascii').strip() | |
43 revcount = len(subprocess.check_output( | |
44 "git log --oneline", shell=True, | |
45 cwd=path).decode('ascii').split()) | |
46 tag = subprocess.check_output("git describe --tags --abbrev=0", | |
47 cwd=path, | |
48 shell=True).decode('ascii').strip() | |
49 version_info = "{branch}-{tag}-{revcount}({shorthash})".format( | |
50 branch=branch, | |
51 shorthash=shorthash, | |
52 tag=tag, | |
53 revcount=revcount | |
54 ) | |
55 except: | |
56 # alernativelly - read it from file | |
57 try: | |
58 with open(path + "/version_info.txt", 'r') as f: | |
59 version_info = f.read() | |
60 except FileNotFoundError: | |
61 version_info = "version of pipeline not available!" | |
62 | |
63 ## get database versions: | |
64 PD = "?" | |
65 PDmd5 = "?" | |
66 DD = "?" | |
67 DDmd5 = "?" | |
68 try: | |
69 PD = os.path.basename(config.PROTEIN_DATABASE) | |
70 PDmd5 = utils.md5checksum(config.PROTEIN_DATABASE + ".psq", | |
71 fail_if_missing=not tarean_mode) | |
72 DD = os.path.basename(config.DNA_DATABASE) | |
73 DDmd5 = utils.md5checksum(config.DNA_DATABASE + ".nsq") | |
74 except: | |
75 ## some problem with databases | |
76 pass | |
77 version_string = ( | |
78 "-------------------------------------" | |
79 "-------------------------------------\n" | |
80 "PIPELINE VERSION : " | |
81 "{version_info}\n\n" | |
82 "PROTEIN DATABASE VERSION : {PD}\n" | |
83 " md5 checksum : {PDmd5}\n\n" | |
84 "DNA DATABASE VERSION : {DD}\n" | |
85 " md5 checksum : {DDmd5}\n" | |
86 "-------------------------------------" | |
87 "-------------------------------------\n").format( | |
88 | |
89 version_info=version_info, | |
90 PD=PD, | |
91 PDmd5=PDmd5, | |
92 DD=DD, | |
93 DDmd5=DDmd5 | |
94 ) | |
95 | |
96 LOGGER.info(version_string) | |
97 return version_string | |
98 | |
99 | |
100 def valid_database(database_file): | |
101 with open(database_file, 'r', encoding='ascii') as f: | |
102 for i in f: | |
103 if i[0] == ">": | |
104 if not re.match(">.+#.+/*", i): | |
105 # TODO - make edits to correct fomating of custom database??? | |
106 return False | |
107 return True | |
108 | |
109 | |
110 def add_databases(databases, custom_databases_dir, dbtype='nucl'): | |
111 '''custom databases are copied to directory tree and blast | |
112 database is created using makeblastdb | |
113 ''' | |
114 | |
115 databases_ok = [] | |
116 print(databases) | |
117 for db_path, db_name in databases: | |
118 db_destination = "{}/{}".format(custom_databases_dir, db_name) | |
119 shutil.copyfile(db_path, db_destination) | |
120 if not valid_database(db_destination): | |
121 raise ValueError(( | |
122 "\n------------------------------------------------------------\n" | |
123 "Custom database is not valid!\n" | |
124 "Custom database of repeats are DNA sequences in fasta format.\n" | |
125 "The required format for IDs in a custom library is : \n" | |
126 " '>reapeatname#class/subclass'\n" | |
127 "Reformat the database and try again!\n" | |
128 "-------------------------------------------------------------\n\n" | |
129 )) | |
130 | |
131 cmd = "makeblastdb -in {0} -out {0} -dbtype {1}".format(db_destination, | |
132 dbtype) | |
133 print(cmd) | |
134 args = shlex.split(cmd) | |
135 print(args) | |
136 if subprocess.check_call(args, stderr=sys.stdout): | |
137 Warning("makeblastdb on {} failed".format(db_name)) | |
138 else: | |
139 databases_ok.append([db_destination, "custom_db_" + db_name]) | |
140 if len(databases_ok) == 0: | |
141 return None | |
142 else: | |
143 return databases_ok | |
144 | |
145 | |
146 def meminfo(): | |
147 ''' detect physical memory and memory usage''' | |
148 info = {} | |
149 required_fields = [ | |
150 'MemTotal:', 'MemFree:', 'Cached:', 'SwapCached:', 'Buffers:' | |
151 ] | |
152 with open('/proc/meminfo', 'r') as f: | |
153 for i in f: | |
154 a = i.split() | |
155 if a[0] in required_fields: | |
156 info[a[0]] = int(a[1]) | |
157 return info | |
158 | |
159 | |
160 def dict2lists(d): | |
161 ''' convert dict to nested list | |
162 use the funsction to pass dictionary to R function | |
163 ''' | |
164 values = list(d.values()) | |
165 keys = list(d.keys()) | |
166 return [values, keys] | |
167 | |
168 | |
169 def show_object(obj): | |
170 ''' | |
171 helper function for printing all public atributes, | |
172 does not print callebme atributes e.i. methods.. | |
173 ''' | |
174 | |
175 s = "Configuration--------------->\n" | |
176 for i in dir(obj): | |
177 # do not show private | |
178 if i[:2] != "__": | |
179 value = getattr(obj, i) | |
180 if not callable(value): | |
181 s += "{} : {}\n".format(i, value) | |
182 s += "<---------------configuration\n" | |
183 return s | |
184 | |
185 | |
186 class DataInfo(): | |
187 ''' | |
188 stores information state of clustering and data | |
189 ''' | |
190 | |
191 def __init__(self, args, paths): | |
192 LOGGER.info("getting information about input sequences") | |
193 self.args = args | |
194 self.working_directory = args.output_dir | |
195 self.input_sequences = args.sequences.name | |
196 self.number_of_input_sequences = seqtools.SequenceSet.fasta_length( | |
197 self.input_sequences) | |
198 self.paired = args.paired | |
199 self.prefix_length = args.prefix_length | |
200 self.physical_memory = meminfo()['MemTotal:'] | |
201 self.edges_max = config.EMAX | |
202 # set max memory | |
203 if args.max_memory: | |
204 self.max_memory = args.max_memory | |
205 else: | |
206 self.max_memory = meminfo()["MemTotal:"] | |
207 # modify initial setup if number of sequences is low | |
208 if args.automatic_filtering: | |
209 config.NUMBER_OF_SEQUENCES_FOR_PRERUN = config.NUMBER_OF_SEQUENCES_FOR_PRERUN_WITH_FILTERING | |
210 | |
211 if self.number_of_input_sequences < config.NUMBER_OF_SEQUENCES_FOR_PRERUN: | |
212 config.NUMBER_OF_SEQUENCES_FOR_PRERUN = self.number_of_input_sequences | |
213 | |
214 # is number of input sequences sufficient | |
215 if self.number_of_input_sequences < config.MINIMUM_NUMBER_OF_INPUT_SEQUENCES: | |
216 raise WrongInputDataError( | |
217 "provide more sequences for clustering, minumum {} is .required".format( | |
218 config.MINIMUM_NUMBER_OF_INPUT_SEQUENCES)) | |
219 # these atribudes will be set later after clustering is done | |
220 self.max_annotated_clusters = None | |
221 self.max_annotated_superclusters = None | |
222 # the atributes will be set after prerun is performed | |
223 self.prerun_ecount = None | |
224 self.prerun_ecount_corrected = None | |
225 self.sample_size = None | |
226 self.max_number_reads_for_clustering = None | |
227 self.mincln = None | |
228 self.number_of_omitted_reads = 0 | |
229 LOGGER.info("sampling sequences for prerun analysis") | |
230 sample = seqtools.SequenceSet( | |
231 source=self.input_sequences, | |
232 sample_size=config.NUMBER_OF_SEQUENCES_FOR_PRERUN, | |
233 paired=self.paired, | |
234 filename=paths.sample_db, | |
235 fasta=paths.sample_fasta, | |
236 rename=True) | |
237 sample.makeblastdb(legacy=args.options.legacy_database, lastdb=args.options.lastdb) | |
238 # preliminary clustering | |
239 self.prerun_vcount = len(sample) | |
240 # line count | |
241 self._prerun(sample, paths) | |
242 # adjust size of chunks: | |
243 if self.number_of_reads_for_clustering < config.CHUNK_SIZE * 30: | |
244 config.CHUNK_SIZE = round(self.number_of_reads_for_clustering / 40) | |
245 | |
246 def _prerun(self, sample, paths): | |
247 '''Preliminary characterization sequences using | |
248 clustering on small dataset - stored as sample ''' | |
249 sample.make_chunks(chunk_size=1000) | |
250 sample.create_hitsort(options=self.args.options) | |
251 sample_hitsort = graphtools.Graph(source=sample.hitsort, | |
252 paired=self.paired, | |
253 seqids=sample.keys()) | |
254 sample_hitsort.save_indexed_graph() | |
255 sample_hitsort.louvain_clustering(merge_threshold=0.2) | |
256 sample_hitsort.export_cls(path=paths.prerun_cls_file) | |
257 sample.annotate( | |
258 config.DNA_DATABASE, | |
259 annotation_name="dna_database", | |
260 directory=paths.prerun, | |
261 params=self.args.options.annotation_search_params.blastn) | |
262 | |
263 selected_tarean_contigs = [] | |
264 ecount_corrected = sample_hitsort.ecount | |
265 vcount_corrected = sample_hitsort.vcount | |
266 if self.args.automatic_filtering: | |
267 prerun_cluster_info = sample_hitsort.export_clusters_files_multiple( | |
268 min_size=10, | |
269 directory=paths.prerun_clusters, | |
270 sequences=sample, | |
271 tRNA_database_path=config.TRNA_DATABASE, | |
272 satellite_model_path=config.SATELLITE_MODEL) | |
273 # check of prerun contain clusters with large number of edges | |
274 # these sequences can be used for filtering | |
275 for cl in prerun_cluster_info: | |
276 print(cl.ecount, cl.vcount, sample_hitsort.ecount, | |
277 cl.tandem_rank) | |
278 | |
279 if (cl.tandem_rank in config.TANDEM_RANKS[0:2] and | |
280 cl.ecount / sample_hitsort.ecount > | |
281 config.FILTER_MIN_PROP_THRESHOLD and | |
282 cl.vcount > config.FILTER_MIN_SIZE_THRESHOLD): | |
283 selected_tarean_contigs.append(cl.tarean_contig_file) | |
284 ecount_corrected -= cl.ecount | |
285 vcount_corrected -= cl.vcount | |
286 | |
287 if selected_tarean_contigs: | |
288 with open(paths.filter_sequences_file, 'w') as out: | |
289 for fname in selected_tarean_contigs: | |
290 with open(fname, 'r') as f: | |
291 out.write(f.read()) | |
292 self.sequence_fiter = paths.filter_sequences_file | |
293 else: | |
294 self.sequence_fiter = None | |
295 | |
296 self.prerun_ecount = sample_hitsort.ecount | |
297 self.prerun_ecount_corrected = ecount_corrected | |
298 self.prerun_vcount_corrected = vcount_corrected | |
299 self.max_number_reads_for_clustering = round(( | |
300 ((self.edges_max * self.max_memory) / | |
301 self.prerun_ecount_corrected * self.prerun_vcount**2)**(0.5)) / 2) | |
302 | |
303 if self.max_number_reads_for_clustering >= self.number_of_input_sequences: | |
304 self.sample_size = 0 | |
305 else: | |
306 self.sample_size = self.max_number_reads_for_clustering | |
307 | |
308 n1 = self.sample_size if self.sample_size != 0 else self.number_of_input_sequences | |
309 n2 = self.args.sample if self.args.sample != 0 else self.number_of_input_sequences | |
310 self.number_of_reads_for_clustering = min(n1, n2) | |
311 # minlcn is set either based on mincl or value specified in config, | |
312 # whatever is higher | |
313 self.mincln = int(self.number_of_reads_for_clustering * | |
314 self.args.mincl / 100) | |
315 if self.mincln < config.MINIMUM_NUMBER_OF_READS_IN_CLUSTER: | |
316 self.mincln = config.MINIMUM_NUMBER_OF_READS_IN_CLUSTER | |
317 | |
318 def __str__(self): | |
319 s = "Data info------------------->\n" | |
320 for i in dir(self): | |
321 # do not show private | |
322 if i[:2] != "__": | |
323 value = getattr(self, i) | |
324 if not callable(value): | |
325 s += "{} : {}\n".format(i, value) | |
326 s += "<----------------------Data info\n" | |
327 return s | |
328 | |
329 | |
330 class DataFiles(object): | |
331 ''' | |
332 stores location of data files and create directories ... | |
333 atributes are: | |
334 - individual directories | |
335 - individual files | |
336 - list of files or directories | |
337 | |
338 directories are created if does not exist | |
339 ''' | |
340 | |
341 def __init__(self, working_dir, subdirs, files): | |
342 LOGGER.info("creating directory structure") | |
343 self.working_dir = working_dir | |
344 # add and create directories paths | |
345 for i in subdirs: | |
346 d = os.path.join(self.working_dir, subdirs[i]) | |
347 os.makedirs(d, exist_ok=True) | |
348 setattr(self, i, d) | |
349 setattr(self, i + "__relative", subdirs[i]) | |
350 # add file paths | |
351 for i in files: | |
352 d = os.path.join(self.working_dir, files[i]) | |
353 setattr(self, i, d) | |
354 setattr(self, i + "__relative", files[i]) | |
355 | |
356 def __str__(self): | |
357 s = "" | |
358 for i in dir(self): | |
359 # do not show private | |
360 if i[:2] != "__": | |
361 value = getattr(self, i) | |
362 if not callable(value): | |
363 s += "{} : {}\n".format(i, value) | |
364 return s | |
365 | |
366 def as_list(self): | |
367 ''' | |
368 convert attr and vaues to list - suitable for passing values to R functions | |
369 ''' | |
370 values = list() | |
371 keys = list() | |
372 for i in dir(self): | |
373 # do not show private | |
374 if i[:2] != "__": | |
375 value = getattr(self, i) | |
376 if not callable(value): | |
377 values.append(value) | |
378 keys.append(i) | |
379 return [values, keys] | |
380 | |
381 def cleanup(self, paths): | |
382 ''' will remove unnecessary files from working directory ''' | |
383 for i in paths: | |
384 fn = getattr(self, i) | |
385 if os.path.exists(fn): | |
386 if os.path.isdir(fn): | |
387 shutil.rmtree(fn, ignore_errors=False) | |
388 else: | |
389 os.remove(fn) | |
390 | |
391 | |
392 class WrongInputDataError(Exception): | |
393 '''Custom exception for wrong input | |
394 ''' | |
395 | |
396 def __init__(self, arg): | |
397 super(WrongInputDataError, self).__init__(arg) | |
398 self.msg = arg | |
399 | |
400 | |
401 class Range(): | |
402 ''' | |
403 This class is used to check float range in argparse | |
404 ''' | |
405 | |
406 def __init__(self, start, end): | |
407 self.start = start | |
408 self.end = end | |
409 | |
410 def __eq__(self, other): | |
411 return self.start <= other <= self.end | |
412 | |
413 def __str__(self): | |
414 return "float range {}..{}".format(self.start, self.end) | |
415 | |
416 def __repr__(self): | |
417 return "float range {}..{}".format(self.start, self.end) | |
418 | |
419 | |
420 class DirectoryType(object): | |
421 ''' | |
422 this class is similar to argparse.FileType | |
423 for mode 'w' creates and check the access to the directory | |
424 for mode 'r' check the presence of the dictory and accesibility | |
425 ''' | |
426 | |
427 def __init__(self, mode='r'): | |
428 self._mode = mode | |
429 | |
430 def __call__(self, string): | |
431 if self._mode == 'w': | |
432 try: | |
433 os.makedirs(string, exist_ok=True) | |
434 except FileExistsError: | |
435 raise argparse.ArgumentTypeError( | |
436 "Cannot create directory, '{}' is a file".format(string)) | |
437 if os.access(string, os.W_OK): | |
438 return string | |
439 else: | |
440 raise argparse.ArgumentTypeError( | |
441 "Directory '{}' is not writable".format(string)) | |
442 if self._mode == 'r': | |
443 if not os.path.isdir(string): | |
444 raise argparse.ArgumentTypeError( | |
445 "'{}' is not a directory".format(string)) | |
446 if os.access(string, os.R_OK): | |
447 return string | |
448 else: | |
449 raise argparse.ArgumentTypeError( | |
450 "Directory '{}' is not readable".format(string)) | |
451 | |
452 | |
453 def get_cmdline_args(): | |
454 '''seqclust command line parser''' | |
455 | |
456 description = """RepeatExplorer: | |
457 Repetitive sequence discovery and clasification from NGS data | |
458 | |
459 """ | |
460 | |
461 # arguments parsing | |
462 parser = argparse.ArgumentParser(description=description, | |
463 formatter_class=RawTextHelpFormatter) | |
464 parser.add_argument('-p', '--paired', action='store_true', default=False) | |
465 parser.add_argument('-A', | |
466 '--automatic_filtering', | |
467 action='store_true', | |
468 default=False) | |
469 parser.add_argument( | |
470 '-t', | |
471 '--tarean_mode', | |
472 action='store_true', | |
473 default=False, | |
474 help="analyze only tandem reapeats without additional classification") | |
475 parser.add_argument('sequences', type=argparse.FileType('r')) | |
476 parser.add_argument('-l', | |
477 '--logfile', | |
478 type=argparse.FileType('w'), | |
479 default=None, | |
480 help='log file, logging goes to stdout if not defines') | |
481 parser.add_argument('-m', | |
482 '--mincl', | |
483 type=float, | |
484 choices=[Range(0.0, 100.0)], | |
485 default=0.01) | |
486 parser.add_argument( | |
487 '-M', | |
488 '--merge_threshold', | |
489 type=float, | |
490 choices=[0, Range(0.1, 1)], | |
491 default=0, | |
492 help= | |
493 "threshold for mate-pair based cluster merging, default 0 - no merging") | |
494 parser.add_argument( | |
495 '-o', | |
496 '--min_lcov', | |
497 type=float, | |
498 choices=[Range(30.0, 80.0)], | |
499 default=55, | |
500 help= | |
501 "minimal overlap coverage - relative to longer sequence length, default 55") | |
502 parser.add_argument('-c', | |
503 '--cpu', | |
504 type=int, | |
505 default=int(os.environ.get('TAREAN_CPU', 0)), | |
506 help="number of cpu to use, if 0 use max available") | |
507 parser.add_argument( | |
508 '-s', | |
509 '--sample', | |
510 type=int, | |
511 default=0, | |
512 help="use only sample of input data[by default max reads is used") | |
513 parser.add_argument( | |
514 '-P', | |
515 '--prefix_length', | |
516 type=int, | |
517 default=0, | |
518 help=("If you wish to keep part of the sequences name,\n" | |
519 " enter the number of characters which should be \n" | |
520 "kept (1-10) instead of zero. Use this setting if\n" | |
521 " you are doing comparative analysis")) | |
522 parser.add_argument('-v', | |
523 '--output_dir', | |
524 type=DirectoryType('w'), | |
525 default="clustering_results") | |
526 parser.add_argument( | |
527 '-r', | |
528 '--max_memory', | |
529 type=int, | |
530 default=int(os.environ.get('TAREAN_MAX_MEM', 0)), | |
531 help=("Maximal amount of available RAM in kB if not set\n" | |
532 "clustering tries to use whole available RAM")) | |
533 parser.add_argument( | |
534 '-d', | |
535 '--database', | |
536 default=None, | |
537 help="fasta file with database for annotation and name of database", | |
538 nargs=2, | |
539 action='append') | |
540 | |
541 parser.add_argument( | |
542 "-C", | |
543 "--cleanup", | |
544 default=False, | |
545 action="store_true", | |
546 help="remove unncessary large files from working directory") | |
547 | |
548 parser.add_argument( | |
549 "-k", | |
550 "--keep_names", | |
551 default=False, | |
552 action="store_true", | |
553 help="keep sequence names, by default sequences are renamed") | |
554 | |
555 parser.add_argument( | |
556 '-a', '--assembly_min', | |
557 default=5, type=int, | |
558 choices=[2,3,4,5], | |
559 help=('Assembly is performed on individual clusters, by default \n' | |
560 'clusters with size less then 5 are not assembled. If you \n' | |
561 'want need assembly of smaller cluster set *assmbly_min* \n' | |
562 'accordingly\n') | |
563 ) | |
564 | |
565 parser.add_argument('-tax', | |
566 '--taxon', | |
567 default=config.PROTEIN_DATABASE_DEFAULT, | |
568 choices=list(config.PROTEIN_DATABASE_OPTIONS.keys()), | |
569 help="Select taxon and protein database version" | |
570 ) | |
571 | |
572 parser.add_argument( | |
573 '-opt', | |
574 '--options', | |
575 default="ILLUMINA", | |
576 choices=['ILLUMINA','ILLUMINA_DUST_OFF', 'ILLUMINA_SHORT', 'OXFORD_NANOPORE']) | |
577 | |
578 parser.add_argument( | |
579 '-D', | |
580 '--domain_search', | |
581 default="BLASTX_W3", | |
582 choices=['BLASTX_W2', 'BLASTX_W3', 'DIAMOND'], | |
583 help= | |
584 ('Detection of protein domains can be performed by either blastx or\n' | |
585 ' diamond" program. options are:\n' | |
586 ' BLASTX_W2 - blastx with word size 2 (slowest, the most sesitive)\n' | |
587 ' BLASTX_W3 - blastx with word size 3 (default)\n' | |
588 ' DIAMOND - diamond program (significantly faster, less sensitive)\n' | |
589 'To use this option diamond program must be installed in your PATH')) | |
590 | |
591 args = parser.parse_args() | |
592 | |
593 # covert option string to namedtuple of options | |
594 args.options = getattr(config, args.options) | |
595 # set protein database | |
596 args.options = args.options._replace( | |
597 annotation_search_params= | |
598 args.options.annotation_search_params._replace(blastx=getattr( | |
599 config, args.domain_search))) | |
600 return args | |
601 | |
602 | |
603 def main(): | |
604 ''' | |
605 Perform graph based clustering | |
606 ''' | |
607 # argument parsing: | |
608 args = get_cmdline_args() | |
609 config.ARGS = args | |
610 logfile = args.logfile.name if args.logfile else None | |
611 logging.basicConfig( | |
612 filename=logfile, | |
613 format='\n%(asctime)s - %(name)s - %(levelname)s -\n%(message)s\n', | |
614 level=logging.INFO) | |
615 config.PROTEIN_DATABASE, config.CLASSIFICATION_HIERARCHY = config.PROTEIN_DATABASE_OPTIONS[ | |
616 args.taxon] | |
617 # number of CPU to use | |
618 pipeline_version_info = get_version(config.MAIN_DIR, tarean_mode = args.tarean_mode) | |
619 config.PROC = args.cpu if args.cpu != 0 else multiprocessing.cpu_count() | |
620 # TODO add kmer range specification to config - based on the technology | |
621 r2py.create_connection() | |
622 try: | |
623 reporting = r2py.R(config.RSOURCE_reporting, verbose=True) | |
624 create_annotation = r2py.R(config.RSOURCE_create_annotation, | |
625 verbose=True) | |
626 LOGGER.info(args) | |
627 paths = DataFiles(working_dir=args.output_dir, | |
628 subdirs=config.DIRECTORY_TREE, | |
629 files=config.FILES) | |
630 # files to be included in output | |
631 for src, dest in config.INCLUDE: | |
632 shutil.copy(src, os.path.join(paths.working_dir, dest)) | |
633 # geting information about data | |
634 run_info = DataInfo(args, paths) | |
635 LOGGER.info(run_info) | |
636 LOGGER.info(show_object(config)) | |
637 # load all sequences or sample | |
638 sequences = seqtools.SequenceSet( | |
639 source=run_info.input_sequences, | |
640 sample_size=run_info.number_of_reads_for_clustering, | |
641 paired=run_info.paired, | |
642 filename=paths.sequences_db, | |
643 fasta=paths.sequences_fasta, | |
644 prefix_length=run_info.prefix_length, | |
645 rename=not run_info.args.keep_names) | |
646 if run_info.sequence_fiter: | |
647 n = sequences.remove_sequences_using_filter( | |
648 run_info.sequence_fiter, | |
649 keep_proportion=config.FILTER_PROPORTION_OF_KEPT, | |
650 omitted_sequences_file=paths.filter_omitted, | |
651 kept_sequences_file=paths.filter_kept | |
652 ) | |
653 run_info.number_of_omitted_reads = n | |
654 # add custom databases if provided | |
655 if args.database: | |
656 config.CUSTOM_DNA_DATABASE = add_databases( | |
657 args.database, | |
658 custom_databases_dir=paths.custom_databases) | |
659 sequences.makeblastdb(legacy=args.options.legacy_database, lastdb=args.options.lastdb) | |
660 LOGGER.info("chunksize: {}".format(config.CHUNK_SIZE)) | |
661 sequences.make_chunks(chunk_size=config.CHUNK_SIZE) | |
662 sequences.create_hitsort(output=paths.hitsort, options=args.options) | |
663 hitsort = graphtools.Graph(filename=paths.hitsort_db, | |
664 source=paths.hitsort, | |
665 paired=run_info.paired, | |
666 seqids=sequences.keys()) | |
667 | |
668 LOGGER.info('hitsort with {} reads and {} edges loaded.'.format( | |
669 hitsort.vcount, hitsort.ecount)) | |
670 | |
671 hitsort.save_indexed_graph() | |
672 LOGGER.info('hitsort index created.') | |
673 | |
674 hitsort.louvain_clustering(merge_threshold=args.merge_threshold, | |
675 cleanup=args.cleanup) | |
676 hitsort.export_cls(path=paths.cls_file) | |
677 hitsort.adjust_cluster_size(config.FILTER_PROPORTION_OF_KEPT, | |
678 sequences.ids_kept) | |
679 sequences.annotate(config.DNA_DATABASE, | |
680 annotation_name="dna_database", | |
681 directory=paths.blastn, | |
682 params=args.options.annotation_search_params.blastn) | |
683 | |
684 if config.CUSTOM_DNA_DATABASE: | |
685 LOGGER.info('annotating with custom database') | |
686 for db, db_name in config.CUSTOM_DNA_DATABASE: | |
687 sequences.annotate( | |
688 db, | |
689 annotation_name=db_name, | |
690 directory=paths.blastn, | |
691 params=args.options.annotation_search_params.blastn) | |
692 | |
693 if not args.tarean_mode: | |
694 # additional analyses - full RE run | |
695 # this must be finished befor creating clusters_info | |
696 sequences.annotate( | |
697 config.PROTEIN_DATABASE, | |
698 annotation_name="protein_database", | |
699 directory=paths.blastx, | |
700 params=args.options.annotation_search_params.blastx) | |
701 | |
702 ## annotating using customa databasesreplace | |
703 LOGGER.info('creating cluster graphs') | |
704 clusters_info = hitsort.export_clusters_files_multiple( | |
705 min_size=run_info.mincln, | |
706 directory=paths.clusters, | |
707 sequences=sequences, | |
708 tRNA_database_path=config.TRNA_DATABASE, | |
709 satellite_model_path=config.SATELLITE_MODEL) | |
710 if not args.tarean_mode: | |
711 LOGGER.info("assembling..") | |
712 assembly_tools.assembly(sequences, | |
713 hitsort, | |
714 clusters_info, | |
715 assembly_dir=paths.assembly, | |
716 contigs_file=paths.contigs, | |
717 min_size_of_cluster_for_assembly=args.assembly_min) | |
718 | |
719 LOGGER.info("detecting LTR in assembly..") | |
720 for i in clusters_info: | |
721 i.detect_ltr(config.TRNA_DATABASE) | |
722 | |
723 run_info.max_annotated_clusters = max([i.index for i in clusters_info]) | |
724 run_info.max_annotated_superclusters = max([i.supercluster | |
725 for i in clusters_info]) | |
726 # make reports | |
727 cluster_listing = [i.listing() for i in clusters_info] | |
728 # make path relative to paths.cluster_info | |
729 utils.save_as_table(cluster_listing, paths.clusters_info) | |
730 # creates table cluster_info in hitsort database | |
731 graphtools.Cluster.add_cluster_table_to_database(cluster_listing, | |
732 paths.hitsort_db) | |
733 # export files for consensus sequences, one for each ranks | |
734 consensus_files = [] | |
735 for i in config.TANDEM_RANKS: | |
736 consensus_files.append(utils.export_tandem_consensus( | |
737 clusters_info, | |
738 path=paths.TR_consensus_fasta.format(i), | |
739 rank=i)) | |
740 | |
741 if not args.tarean_mode: | |
742 LOGGER.info("Creating report for superclusters") | |
743 create_annotation.create_all_superclusters_report( | |
744 max_supercluster=run_info.max_annotated_superclusters, | |
745 paths=paths.as_list(), | |
746 libdir=paths.libdir, | |
747 superclusters_dir=paths.superclusters, | |
748 seqdb=paths.sequences_db, | |
749 hitsortdb=paths.hitsort_db, | |
750 classification_hierarchy_file=config.CLASSIFICATION_HIERARCHY, | |
751 HTML_LINKS=dict2lists(config.HTML_LINKS)) | |
752 | |
753 LOGGER.info("Creating report for individual clusters") | |
754 for cluster in clusters_info: | |
755 create_annotation.create_cluster_report( | |
756 cluster.index, | |
757 seqdb=paths.sequences_db, | |
758 hitsortdb=paths.hitsort_db, | |
759 classification_hierarchy_file= | |
760 config.CLASSIFICATION_HIERARCHY, | |
761 HTML_LINKS=dict2lists(config.HTML_LINKS)) | |
762 | |
763 LOGGER.info("Creating main html report") | |
764 reporting.create_main_reports( | |
765 paths=paths.as_list(), | |
766 N_clustering=run_info.number_of_reads_for_clustering, | |
767 N_input=run_info.number_of_input_sequences, | |
768 N_omit=run_info.number_of_omitted_reads, | |
769 merge_threshold=args.merge_threshold, | |
770 paired=run_info.paired, | |
771 consensus_files=consensus_files, | |
772 custom_db=bool(config.CUSTOM_DNA_DATABASE), | |
773 tarean_mode=args.tarean_mode, | |
774 HTML_LINKS=dict2lists(config.HTML_LINKS), | |
775 pipeline_version_info=pipeline_version_info, | |
776 max_memory=run_info.max_memory, | |
777 max_number_reads_for_clustering=run_info.max_number_reads_for_clustering, | |
778 mincln=run_info.mincln | |
779 ) | |
780 | |
781 LOGGER.info("Html report reports created") | |
782 | |
783 except: | |
784 r2py.shutdown(config.RSERVE_PORT) | |
785 raise | |
786 finally: | |
787 if args.cleanup: | |
788 paths.cleanup(config.FILES_TO_DISCARD_AT_CLEANUP) | |
789 else: | |
790 LOGGER.info("copy databases to working directory") | |
791 shutil.copy(paths.sequences_db, paths.working_dir) | |
792 shutil.copy(paths.hitsort_db, paths.working_dir) | |
793 # copy log file inside working directory | |
794 if logfile: | |
795 shutil.copyfile(logfile, paths.logfile) | |
796 | |
797 | |
798 if __name__ == "__main__": | |
799 main() | |
800 # some error handling here: |