Mercurial > repos > mvdbeek > mismatch_frequencies
comparison mismatch_frequencies.py @ 19:f7da7f3e2c98
planemo upload for repository https://bitbucket.org/drosofff/gedtools/
author | mvdbeek |
---|---|
date | Sun, 24 May 2015 11:12:24 -0400 |
parents | 848d799e6fe8 |
children | 942464ea4211 |
comparison
equal
deleted
inserted
replaced
18:e3d950e52e38 | 19:f7da7f3e2c98 |
---|---|
1 import pysam, re, string | 1 import pysam, re, string |
2 import matplotlib.pyplot as plt | 2 import matplotlib.pyplot as plt |
3 import pandas as pd | 3 import pandas as pd |
4 import json | |
4 from collections import defaultdict | 5 from collections import defaultdict |
5 from collections import OrderedDict | 6 from collections import OrderedDict |
6 import argparse | 7 import argparse |
8 import itertools | |
7 | 9 |
8 class MismatchFrequencies: | 10 class MismatchFrequencies: |
9 '''Iterate over a SAM/BAM alignment file, collecting reads with mismatches. One | 11 '''Iterate over a SAM/BAM alignment file, collecting reads with mismatches. One |
10 class instance per alignment file. The result_dict attribute will contain a | 12 class instance per alignment file. The result_dict attribute will contain a |
11 nested dictionary with name, readlength and mismatch count.''' | 13 nested dictionary with name, readlength and mismatch count.''' |
12 def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21, maximal_readlength=21, | 14 def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21, |
13 number_of_allowed_mismatches=1, ignore_5p_nucleotides=0, ignore_3p_nucleotides=0): | 15 maximal_readlength=21, |
16 number_of_allowed_mismatches=1, | |
17 ignore_5p_nucleotides=0, | |
18 ignore_3p_nucleotides=0, | |
19 possible_mismatches = [ | |
20 'AC', 'AG', 'AT', | |
21 'CA', 'CG', 'CT', | |
22 'GA', 'GC', 'GT', | |
23 'TA', 'TC', 'TG' | |
24 ]): | |
14 | 25 |
15 self.result_dict = result_dict | 26 self.result_dict = result_dict |
16 self.name = name | 27 self.name = name |
17 self.minimal_readlength = minimal_readlength | 28 self.minimal_readlength = minimal_readlength |
18 self.maximal_readlength = maximal_readlength | 29 self.maximal_readlength = maximal_readlength |
19 self.number_of_allowed_mismatches = number_of_allowed_mismatches | 30 self.number_of_allowed_mismatches = number_of_allowed_mismatches |
20 self.ignore_5p_nucleotides = ignore_5p_nucleotides | 31 self.ignore_5p_nucleotides = ignore_5p_nucleotides |
21 self.ignore_3p_nucleotides = ignore_3p_nucleotides | 32 self.ignore_3p_nucleotides = ignore_3p_nucleotides |
33 self.possible_mismatches = possible_mismatches | |
22 | 34 |
23 if alignment_file: | 35 if alignment_file: |
24 self.pysam_alignment = pysam.Samfile(alignment_file) | 36 self.pysam_alignment = pysam.Samfile(alignment_file) |
25 result_dict[name]=self.get_mismatches(self.pysam_alignment, minimal_readlength, maximal_readlength) | 37 self.references = self.pysam_alignment.references #names of fasta reference sequences |
26 | 38 result_dict[name]=self.get_mismatches( |
27 def get_mismatches(self, pysam_alignment, minimal_readlength, maximal_readlength): | 39 self.pysam_alignment, |
40 minimal_readlength, | |
41 maximal_readlength, | |
42 possible_mismatches | |
43 ) | |
44 | |
45 def get_mismatches(self, pysam_alignment, minimal_readlength, | |
46 maximal_readlength, possible_mismatches): | |
28 mismatch_dict = defaultdict(int) | 47 mismatch_dict = defaultdict(int) |
29 len_dict={} | 48 rec_dd = lambda: defaultdict(rec_dd) |
30 for i in range(minimal_readlength, maximal_readlength+1): | 49 len_dict = rec_dd() |
31 len_dict[i]=mismatch_dict.copy() | |
32 for alignedread in pysam_alignment: | 50 for alignedread in pysam_alignment: |
33 if self.read_is_valid(alignedread, minimal_readlength, maximal_readlength): | 51 if self.read_is_valid(alignedread, minimal_readlength, maximal_readlength): |
34 len_dict[int(alignedread.rlen)]['total valid reads'] += 1 | 52 chromosome = pysam_alignment.getrname(alignedread.rname) |
35 MD=alignedread.opt('MD') | 53 try: |
54 len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] += 1 | |
55 except TypeError: | |
56 len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] = 1 | |
57 MD = alignedread.opt('MD') | |
36 if self.read_has_mismatch(alignedread, self.number_of_allowed_mismatches): | 58 if self.read_has_mismatch(alignedread, self.number_of_allowed_mismatches): |
37 (ref_base, mismatch_base)=self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse) | 59 (ref_base, mismatch_base)=self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse) |
38 if ref_base == None: | 60 if ref_base == None: |
39 continue | 61 continue |
40 else: | 62 else: |
41 for i, base in enumerate(ref_base): | 63 for i, base in enumerate(ref_base): |
42 len_dict[int(alignedread.rlen)][ref_base[i]+' to '+mismatch_base[i]] += 1 | 64 if not ref_base[i]+mismatch_base[i] in possible_mismatches: |
65 continue | |
66 try: | |
67 len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] += 1 | |
68 except TypeError: | |
69 len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] = 1 | |
43 return len_dict | 70 return len_dict |
44 | 71 |
45 def read_is_valid(self, read, min_readlength, max_readlength): | 72 def read_is_valid(self, read, min_readlength, max_readlength): |
46 '''Filter out reads that are unmatched, too short or | 73 '''Filter out reads that are unmatched, too short or |
47 too long or that contian insertions''' | 74 too long or that contian insertions''' |
153 | 180 |
154 def barplot(df, library, axes): | 181 def barplot(df, library, axes): |
155 df.plot(kind='bar', ax=axes, subplots=False,\ | 182 df.plot(kind='bar', ax=axes, subplots=False,\ |
156 stacked=False, legend='test',\ | 183 stacked=False, legend='test',\ |
157 title='Mismatch frequencies for {0}'.format(library)) | 184 title='Mismatch frequencies for {0}'.format(library)) |
158 | 185 |
159 def result_dict_to_df(result_dict): | |
160 mismatches = [] | |
161 libraries = [] | |
162 for mismatch, library in result_dict.iteritems(): | |
163 mismatches.append(mismatch) | |
164 libraries.append(pd.DataFrame.from_dict(library, orient='index')) | |
165 df=pd.concat(libraries, keys=mismatches) | |
166 df.index.names = ['library', 'readsize'] | |
167 return df | |
168 | |
169 def df_to_tab(df, output): | 186 def df_to_tab(df, output): |
170 df.to_csv(output, sep='\t') | 187 df.to_csv(output, sep='\t') |
171 | 188 |
172 def plot_result(result_dict, args): | 189 def reduce_result(df, possible_mismatches): |
173 names=args.name | 190 '''takes a pandas dataframe with full mismatch details and |
191 summarises the results for plotting.''' | |
192 alignments = df['Alignment_file'].unique() | |
193 readlengths = df['Readlength'].unique() | |
194 combinations = itertools.product(*[alignments, readlengths]) #generate all possible combinations of readlength and alignment files | |
195 reduced_dict = {} | |
196 frames = [] | |
197 last_column = 3+len(possible_mismatches) | |
198 for combination in combinations: | |
199 library_subset = df[df['Alignment_file'] == combination[0]] | |
200 library_readlength_subset = library_subset[library_subset['Readlength'] == combination[1]] | |
201 sum_of_library_and_readlength = library_readlength_subset.iloc[:,3:last_column+1].sum() | |
202 if not reduced_dict.has_key(combination[0]): | |
203 reduced_dict[combination[0]] = {} | |
204 reduced_dict[combination[0]][combination[1]] = sum_of_library_and_readlength.to_dict() | |
205 return reduced_dict | |
206 | |
207 def plot_result(reduced_dict, args): | |
208 names=reduced_dict.keys() | |
174 nrows=len(names)/2+1 | 209 nrows=len(names)/2+1 |
175 fig = plt.figure(figsize=(16,32)) | 210 fig = plt.figure(figsize=(16,32)) |
176 for i,library in enumerate (names): | 211 for i,library in enumerate (names): |
177 axes=fig.add_subplot(nrows,2,i+1) | 212 axes=fig.add_subplot(nrows,2,i+1) |
178 library_dict=result_dict[library] | 213 library_dict=reduced_dict[library] |
179 for length in library_dict.keys(): | |
180 for mismatch in library_dict[length]: | |
181 if mismatch == 'total valid reads': | |
182 continue | |
183 library_dict[length][mismatch]=library_dict[length][mismatch]/float(library_dict[length]['total valid reads'])*100 | |
184 del library_dict[length]['total valid reads'] | |
185 df=pd.DataFrame(library_dict) | 214 df=pd.DataFrame(library_dict) |
215 df.drop(['total aligned reads'], inplace=True) | |
186 barplot(df, library, axes), | 216 barplot(df, library, axes), |
187 axes.set_ylabel('Mismatch count / all valid reads * 100') | 217 axes.set_ylabel('Mismatch count / all valid reads * readlength') |
188 fig.savefig(args.output_pdf, format='pdf') | 218 fig.savefig(args.output_pdf, format='pdf') |
189 | 219 |
220 def format_result_dict(result_dict, chromosomes, possible_mismatches): | |
221 '''Turn nested dictionary into preformatted tab seperated lines''' | |
222 header = "Reference sequence\tAlignment_file\tReadlength\t" + "\t".join( | |
223 possible_mismatches) + "\ttotal aligned reads" | |
224 libraries = result_dict.keys() | |
225 readlengths = result_dict[libraries[0]].keys() | |
226 result = [] | |
227 for chromosome in chromosomes: | |
228 for library in libraries: | |
229 for readlength in readlengths: | |
230 line = [] | |
231 line.extend([chromosome, library, readlength]) | |
232 try: | |
233 line.extend([result_dict[library][readlength][chromosome].get(mismatch, 0) for mismatch in possible_mismatches]) | |
234 line.extend([result_dict[library][readlength][chromosome].get(u'total valid reads', 0)]) | |
235 except KeyError: | |
236 line.extend([0 for mismatch in possible_mismatches]) | |
237 line.extend([0]) | |
238 result.append(line) | |
239 df = pd.DataFrame(result, columns=header.split('\t')) | |
240 last_column=3+len(possible_mismatches) | |
241 df['mismatches/per aligned nucleotides'] = df.iloc[:,3:last_column].sum(1)/(df.iloc[:,last_column]*df['Readlength']) | |
242 return df | |
243 | |
190 def setup_MismatchFrequencies(args): | 244 def setup_MismatchFrequencies(args): |
191 resultDict=OrderedDict() | 245 resultDict=OrderedDict() |
192 kw_list=[{'result_dict' : resultDict, | 246 kw_list=[{'result_dict' : resultDict, |
193 'alignment_file' :alignment_file, | 247 'alignment_file' :alignment_file, |
194 'name' : name, | 248 'name' : name, |
195 'minimal_readlength' : args.min, | 249 'minimal_readlength' : args.min, |
196 'maximal_readlength' : args.max, | 250 'maximal_readlength' : args.max, |
197 'number_of_allowed_mismatches' : args.n_mm, | 251 'number_of_allowed_mismatches' : args.n_mm, |
198 'ignore_5p_nucleotides' : args.five_p, | 252 'ignore_5p_nucleotides' : args.five_p, |
199 'ignore_3p_nucleotides' : args.three_p} | 253 'ignore_3p_nucleotides' : args.three_p, |
254 'possible_mismatches' : args.possible_mismatches } | |
200 for alignment_file, name in zip(args.input, args.name)] | 255 for alignment_file, name in zip(args.input, args.name)] |
201 return (kw_list, resultDict) | 256 return (kw_list, resultDict) |
202 | 257 |
258 def nested_dict_to_df(dictionary): | |
259 dictionary = {(outerKey, innerKey): values for outerKey, innerDict in dictionary.iteritems() for innerKey, values in innerDict.iteritems()} | |
260 df=pd.DataFrame.from_dict(dictionary).transpose() | |
261 df.index.names = ['Library', 'Readlength'] | |
262 return df | |
263 | |
203 def run_MismatchFrequencies(args): | 264 def run_MismatchFrequencies(args): |
204 kw_list, resultDict=setup_MismatchFrequencies(args) | 265 kw_list, resultDict=setup_MismatchFrequencies(args) |
205 [MismatchFrequencies(**kw_dict) for kw_dict in kw_list] | 266 references = [MismatchFrequencies(**kw_dict).references for kw_dict in kw_list] |
206 return resultDict | 267 return (resultDict, references[0]) |
207 | 268 |
208 def main(): | 269 def main(): |
209 result_dict=run_MismatchFrequencies(args) | 270 result_dict, references = run_MismatchFrequencies(args) |
210 df=result_dict_to_df(result_dict) | 271 df = format_result_dict(result_dict, references, args.possible_mismatches) |
211 plot_result(result_dict, args) | 272 reduced_dict = reduce_result(df, args.possible_mismatches) |
212 df_to_tab(df, args.output_tab) | 273 plot_result(reduced_dict, args) |
274 reduced_df = nested_dict_to_df(reduced_dict) | |
275 df_to_tab(reduced_df, args.output_tab) | |
276 if not args.expanded_output_tab == None: | |
277 df_to_tab(df, args.expanded_output_tab) | |
278 return reduced_dict | |
213 | 279 |
214 if __name__ == "__main__": | 280 if __name__ == "__main__": |
215 | 281 |
216 parser = argparse.ArgumentParser(description='Produce mismatch statistics for BAM/SAM alignment files.') | 282 parser = argparse.ArgumentParser(description='Produce mismatch statistics for BAM/SAM alignment files.') |
217 parser.add_argument('--input', nargs='*', help='Input files in SAM/BAM format') | 283 parser.add_argument('--input', nargs='*', help='Input files in SAM/BAM format') |
218 parser.add_argument('--name', nargs='*', help='Name for input file to display in output file. Should have same length as the number of inputs') | 284 parser.add_argument('--name', nargs='*', help='Name for input file to display in output file. Should have same length as the number of inputs') |
219 parser.add_argument('--output_pdf', help='Output filename for graph') | 285 parser.add_argument('--output_pdf', help='Output filename for graph') |
220 parser.add_argument('--output_tab', help='Output filename for table') | 286 parser.add_argument('--output_tab', help='Output filename for table') |
287 parser.add_argument('--expanded_output_tab', default=None, help='Output filename for table') | |
288 parser.add_argument('--possible_mismatches', default=[ | |
289 'AC', 'AG', 'AT','CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG' | |
290 ], nargs='+', help='specify mismatches that should be counted for the mismatch frequency. The format is Reference base -> observed base, eg AG for A to G mismatches.') | |
221 parser.add_argument('--min', '--minimal_readlength', type=int, help='minimum readlength') | 291 parser.add_argument('--min', '--minimal_readlength', type=int, help='minimum readlength') |
222 parser.add_argument('--max', '--maximal_readlength', type=int, help='maximum readlength') | 292 parser.add_argument('--max', '--maximal_readlength', type=int, help='maximum readlength') |
223 parser.add_argument('--n_mm', '--number_allowed_mismatches', type=int, default=1, help='discard reads with more than n mismatches') | 293 parser.add_argument('--n_mm', '--number_allowed_mismatches', type=int, default=1, help='discard reads with more than n mismatches') |
224 parser.add_argument('--five_p', '--ignore_5p_nucleotides', type=int, default=0, help='when calculating nucleotide mismatch frequencies ignore the first N nucleotides of the read') | 294 parser.add_argument('--five_p', '--ignore_5p_nucleotides', type=int, default=0, help='when calculating nucleotide mismatch frequencies ignore the first N nucleotides of the read') |
225 parser.add_argument('--three_p', '--ignore_3p_nucleotides', type=int, default=1, help='when calculating nucleotide mismatch frequencies ignore the last N nucleotides of the read') | 295 parser.add_argument('--three_p', '--ignore_3p_nucleotides', type=int, default=1, help='when calculating nucleotide mismatch frequencies ignore the last N nucleotides of the read') |
226 #args = parser.parse_args(['--input', '3mismatches_ago2ip.bam', '2mismatch.bam', '--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--min', '21', '--max', '21']) | 296 #args = parser.parse_args(['--input', '3mismatches_ago2ip_s2.bam', '3mismatches_ago2ip_ovary.bam','--possible_mismatches','AC','AG', 'CG', 'TG', 'CT','--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--expanded_output_tab', 'expanded.tab', '--min', '20', '--max', '22']) |
227 args = parser.parse_args() | 297 args = parser.parse_args() |
228 main() | 298 reduced_dict = main() |
229 | 299 |
300 |