12
|
1 import pysam, re, string
|
|
2 import matplotlib.pyplot as plt
|
|
3 import pandas as pd
|
|
4 from collections import defaultdict
|
|
5 from collections import OrderedDict
|
|
6 import argparse
|
|
7
|
|
8 class MismatchFrequencies:
|
|
9 '''Iterate over a SAM/BAM alignment file, collecting reads with mismatches. One
|
|
10 class instance per alignment file. The result_dict attribute will contain a
|
|
11 nested dictionary with name, readlength and mismatch count.'''
|
|
12 def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21, maximal_readlength=21,
|
|
13 number_of_allowed_mismatches=1, ignore_5p_nucleotides=0, ignore_3p_nucleotides=0):
|
|
14
|
|
15 self.result_dict = result_dict
|
|
16 self.name = name
|
|
17 self.minimal_readlength = minimal_readlength
|
|
18 self.maximal_readlength = maximal_readlength
|
|
19 self.number_of_allowed_mismatches = number_of_allowed_mismatches
|
|
20 self.ignore_5p_nucleotides = ignore_5p_nucleotides
|
|
21 self.ignore_3p_nucleotides = ignore_3p_nucleotides
|
|
22
|
|
23 if alignment_file:
|
|
24 self.pysam_alignment = pysam.Samfile(alignment_file)
|
|
25 result_dict[name]=self.get_mismatches(self.pysam_alignment, minimal_readlength, maximal_readlength)
|
|
26
|
|
27 def get_mismatches(self, pysam_alignment, minimal_readlength, maximal_readlength):
|
|
28 mismatch_dict = defaultdict(int)
|
|
29 len_dict={}
|
|
30 for i in range(minimal_readlength, maximal_readlength+1):
|
|
31 len_dict[i]=mismatch_dict.copy()
|
|
32 for alignedread in pysam_alignment:
|
|
33 if self.read_is_valid(alignedread, minimal_readlength, maximal_readlength):
|
|
34 len_dict[int(alignedread.rlen)]['total valid reads'] += 1
|
|
35 MD=alignedread.opt('MD')
|
|
36 if self.read_has_mismatch(alignedread, self.number_of_allowed_mismatches):
|
|
37 (ref_base, mismatch_base)=self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse)
|
|
38 if ref_base == None:
|
|
39 continue
|
|
40 else:
|
|
41 for i, base in enumerate(ref_base):
|
|
42 len_dict[int(alignedread.rlen)][ref_base[i]+' to '+mismatch_base[i]] += 1
|
|
43 return len_dict
|
|
44
|
|
45 def read_is_valid(self, read, min_readlength, max_readlength):
|
|
46 '''Filter out reads that are unmatched, too short or
|
|
47 too long or that contian insertions'''
|
|
48 if read.is_unmapped:
|
|
49 return False
|
|
50 if read.rlen < min_readlength:
|
|
51 return False
|
|
52 if read.rlen > max_readlength:
|
|
53 return False
|
|
54 else:
|
|
55 return True
|
|
56
|
|
57 def read_has_mismatch(self, read, number_of_allowed_mismatches=1):
|
|
58 '''keep only reads with one mismatch. Could be simplified'''
|
|
59 NM=read.opt('NM')
|
|
60 if NM <1: #filter out reads with no mismatch
|
|
61 return False
|
|
62 if NM >number_of_allowed_mismatches: #filter out reads with more than 1 mismtach
|
|
63 return False
|
|
64 else:
|
|
65 return True
|
|
66
|
|
67 def mismatch_in_allowed_region(self, readseq, mismatch_position):
|
|
68 '''
|
|
69 >>> M = MismatchFrequencies()
|
|
70 >>> readseq = 'AAAAAA'
|
|
71 >>> mismatch_position = 2
|
|
72 >>> M.mismatch_in_allowed_region(readseq, mismatch_position)
|
|
73 True
|
|
74 >>> M = MismatchFrequencies(ignore_3p_nucleotides=2, ignore_5p_nucleotides=2)
|
|
75 >>> readseq = 'AAAAAA'
|
|
76 >>> mismatch_position = 1
|
|
77 >>> M.mismatch_in_allowed_region(readseq, mismatch_position)
|
|
78 False
|
|
79 >>> readseq = 'AAAAAA'
|
|
80 >>> mismatch_position = 4
|
|
81 >>> M.mismatch_in_allowed_region(readseq, mismatch_position)
|
|
82 False
|
|
83 '''
|
|
84 mismatch_position+=1 # To compensate for starting the count at 0
|
|
85 five_p = self.ignore_5p_nucleotides
|
|
86 three_p = self.ignore_3p_nucleotides
|
|
87 if any([five_p > 0, three_p > 0]):
|
|
88 if any([mismatch_position <= five_p,
|
|
89 mismatch_position >= (len(readseq)+1-three_p)]): #Again compensate for starting the count at 0
|
|
90 return False
|
|
91 else:
|
|
92 return True
|
|
93 else:
|
|
94 return True
|
|
95
|
|
96 def read_to_reference_mismatch(self, MD, readseq, is_reverse):
|
|
97 '''
|
|
98 This is where the magic happens. The MD tag contains SNP and indel information,
|
|
99 without looking to the genome sequence. This is a typical MD tag: 3C0G2A6.
|
|
100 3 bases of the read align to the reference, followed by a mismatch, where the
|
|
101 reference base is C, followed by 10 bases aligned to the reference.
|
|
102 suppose a reference 'CTTCGATAATCCTT'
|
|
103 ||| || ||||||
|
|
104 and a read 'CTTATATTATCCTT'.
|
|
105 This situation is represented by the above MD tag.
|
|
106 Given MD tag and read sequence this function returns the reference base C, G and A,
|
|
107 and the mismatched base A, T, T.
|
|
108 >>> M = MismatchFrequencies()
|
|
109 >>> MD='3C0G2A7'
|
|
110 >>> seq='CTTATATTATCCTT'
|
|
111 >>> result=M.read_to_reference_mismatch(MD, seq, is_reverse=False)
|
|
112 >>> result[0]=="CGA"
|
|
113 True
|
|
114 >>> result[1]=="ATT"
|
|
115 True
|
|
116 >>>
|
|
117 '''
|
|
118 search=re.finditer('[ATGC]',MD)
|
|
119 if '^' in MD:
|
|
120 print 'WARNING insertion detected, mismatch calling skipped for this read!!!'
|
|
121 return (None, None)
|
|
122 start_index=0 # refers to the leading integer of the MD string before an edited base
|
|
123 current_position=0 # position of the mismatched nucleotide in the MD tag string
|
|
124 mismatch_position=0 # position of edited base in current read
|
|
125 reference_base=""
|
|
126 mismatched_base=""
|
|
127 for result in search:
|
|
128 current_position=result.start()
|
|
129 mismatch_position=mismatch_position+1+int(MD[start_index:current_position]) #converts the leading characters before an edited base into integers
|
|
130 start_index=result.end()
|
|
131 reference_base+=MD[result.end()-1]
|
|
132 mismatched_base+=readseq[mismatch_position-1]
|
|
133 if is_reverse:
|
|
134 reference_base=reverseComplement(reference_base)
|
|
135 mismatched_base=reverseComplement(mismatched_base)
|
|
136 mismatch_position=len(readseq)-mismatch_position-1
|
|
137 if mismatched_base=='N':
|
|
138 return (None, None)
|
|
139 if self.mismatch_in_allowed_region(readseq, mismatch_position):
|
|
140 return (reference_base, mismatched_base)
|
|
141 else:
|
|
142 return (None, None)
|
|
143
|
|
144 def reverseComplement(sequence):
|
|
145 '''do a reverse complement of DNA base.
|
|
146 >>> reverseComplement('ATGC')=='GCAT'
|
|
147 True
|
|
148 >>>
|
|
149 '''
|
|
150 sequence=sequence.upper()
|
|
151 complement = string.maketrans('ATCGN', 'TAGCN')
|
|
152 return sequence.upper().translate(complement)[::-1]
|
|
153
|
|
154 def barplot(df, library, axes):
|
|
155 df.plot(kind='bar', ax=axes, subplots=False,\
|
|
156 stacked=False, legend='test',\
|
|
157 title='Mismatch frequencies for {0}'.format(library))
|
|
158
|
|
159 def result_dict_to_df(result_dict):
|
|
160 mismatches = []
|
|
161 libraries = []
|
|
162 for mismatch, library in result_dict.iteritems():
|
|
163 mismatches.append(mismatch)
|
|
164 libraries.append(pd.DataFrame.from_dict(library, orient='index'))
|
|
165 df=pd.concat(libraries, keys=mismatches)
|
|
166 df.index.names = ['library', 'readsize']
|
|
167 return df
|
|
168
|
|
169 def df_to_tab(df, output):
|
|
170 df.to_csv(output, sep='\t')
|
|
171
|
|
172 def plot_result(result_dict, args):
|
|
173 names=args.name
|
|
174 nrows=len(names)/2+1
|
|
175 fig = plt.figure(figsize=(16,32))
|
|
176 for i,library in enumerate (names):
|
|
177 axes=fig.add_subplot(nrows,2,i+1)
|
|
178 library_dict=result_dict[library]
|
|
179 for length in library_dict.keys():
|
|
180 for mismatch in library_dict[length]:
|
|
181 if mismatch == 'total valid reads':
|
|
182 continue
|
|
183 library_dict[length][mismatch]=library_dict[length][mismatch]/float(library_dict[length]['total valid reads'])*100
|
|
184 del library_dict[length]['total valid reads']
|
|
185 df=pd.DataFrame(library_dict)
|
|
186 barplot(df, library, axes),
|
|
187 axes.set_ylabel('Mismatch count / all valid reads * 100')
|
|
188 fig.savefig(args.output_pdf, format='pdf')
|
|
189
|
|
190 def setup_MismatchFrequencies(args):
|
|
191 resultDict=OrderedDict()
|
|
192 kw_list=[{'result_dict' : resultDict,
|
|
193 'alignment_file' :alignment_file,
|
|
194 'name' : name,
|
|
195 'minimal_readlength' : args.min,
|
|
196 'maximal_readlength' : args.max,
|
|
197 'number_of_allowed_mismatches' : args.n_mm,
|
|
198 'ignore_5p_nucleotides' : args.five_p,
|
|
199 'ignore_3p_nucleotides' : args.three_p}
|
|
200 for alignment_file, name in zip(args.input, args.name)]
|
|
201 return (kw_list, resultDict)
|
|
202
|
|
203 def run_MismatchFrequencies(args):
|
|
204 kw_list, resultDict=setup_MismatchFrequencies(args)
|
|
205 [MismatchFrequencies(**kw_dict) for kw_dict in kw_list]
|
|
206 return resultDict
|
|
207
|
|
208 def main():
|
|
209 result_dict=run_MismatchFrequencies(args)
|
|
210 df=result_dict_to_df(result_dict)
|
|
211 plot_result(result_dict, args)
|
|
212 df_to_tab(df, args.output_tab)
|
|
213
|
|
214 if __name__ == "__main__":
|
|
215
|
|
216 parser = argparse.ArgumentParser(description='Produce mismatch statistics for BAM/SAM alignment files.')
|
|
217 parser.add_argument('--input', nargs='*', help='Input files in SAM/BAM format')
|
|
218 parser.add_argument('--name', nargs='*', help='Name for input file to display in output file. Should have same length as the number of inputs')
|
|
219 parser.add_argument('--output_pdf', help='Output filename for graph')
|
|
220 parser.add_argument('--output_tab', help='Output filename for table')
|
|
221 parser.add_argument('--min', '--minimal_readlength', type=int, help='minimum readlength')
|
|
222 parser.add_argument('--max', '--maximal_readlength', type=int, help='maximum readlength')
|
|
223 parser.add_argument('--n_mm', '--number_allowed_mismatches', type=int, default=1, help='discard reads with more than n mismatches')
|
|
224 parser.add_argument('--five_p', '--ignore_5p_nucleotides', type=int, default=0, help='when calculating nucleotide mismatch frequencies ignore the first N nucleotides of the read')
|
|
225 parser.add_argument('--three_p', '--ignore_3p_nucleotides', type=int, default=1, help='when calculating nucleotide mismatch frequencies ignore the last N nucleotides of the read')
|
|
226 #args = parser.parse_args(['--input', '3mismatches_ago2ip.bam', '2mismatch.bam', '--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--min', '21', '--max', '21'])
|
|
227 args = parser.parse_args()
|
|
228 main()
|
|
229
|