Mercurial > repos > matthias > dada2_plotqualityprofile
comparison data2.R @ 0:de5c51e1c190 draft
planemo upload for repository https://github.com/bernt-matthias/mb-galaxy-tools/tree/topic/dada2/tools/dada2 commit d63c84012410608b3b5d23e130f0beff475ce1f8-dirty
| author | matthias |
|---|---|
| date | Fri, 08 Mar 2019 06:35:24 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:de5c51e1c190 |
|---|---|
| 1 library(dada2) | |
| 2 | |
| 3 # library(DBI) | |
| 4 # library(ggplot2) | |
| 5 library(optparse) | |
| 6 # library(RSQLite) | |
| 7 # library(stringr) | |
| 8 | |
| 9 ## source required R functions | |
| 10 source('user_input_functions.R') | |
| 11 | |
| 12 # print dada2 version | |
| 13 print(paste("dada2 version: ", packageVersion("dada2"))) | |
| 14 | |
| 15 # # R function to create fasta file from dada2 output data | |
| 16 # outdir is directory to output fasta file | |
| 17 # taxa is taxonomy file generated by dada2 | |
| 18 # prefix is string for desired prefix attached to output file names | |
| 19 | |
| 20 dada2fasta <- function(outdir, seqtab.nochim, prefix){ | |
| 21 seq <- colnames(seqtab.nochim) | |
| 22 n <- 0 | |
| 23 ASVs <- c() | |
| 24 for(i in seq){ | |
| 25 n <- n + 1 | |
| 26 ASV <- paste('ASV', as.character(n), sep = '_') | |
| 27 ASVs <- c(ASVs, ASV) | |
| 28 line1 <- paste('>',ASV,sep='') | |
| 29 write(line1, file.path(outdir,sprintf('%s.fasta',prefix)), append=T) | |
| 30 write(i, file.path(outdir,sprintf('%s.fasta',prefix)), append=T) | |
| 31 } | |
| 32 return(ASVs) | |
| 33 } | |
| 34 | |
| 35 | |
| 36 # # R DADA2 workflow | |
| 37 # wd is path to fastq files | |
| 38 # r_path is path to user_input_functions.R | |
| 39 # outdir is path to output directory | |
| 40 # prefix is string for desired prefix attached to output file names | |
| 41 | |
| 42 dada2run <- function(wd, r_path, outdir, prefix){ | |
| 43 | |
| 44 # read-in files------------------------------------------------------- | |
| 45 ## obtain vectors of forward and reverse reads based on 'R1' and 'R2' in file names | |
| 46 ## additionally obtain the coressponding sample names for these files | |
| 47 p1 <- c() | |
| 48 p2 <- c() | |
| 49 sample.names <- c() | |
| 50 for(f in list.files(wd, full.names=T)){ | |
| 51 if(grepl('_1.fq', f)){ | |
| 52 sample <- gsub('^.*[/](.*?)_1\\.fq\\.gz', '\\1', f) | |
| 53 sample.names <- c(sample.names, sample) | |
| 54 p1 <- c(p1, f) | |
| 55 } | |
| 56 if(grepl('_2.fq', f)){ | |
| 57 p2 <- c(p2, f) | |
| 58 } | |
| 59 } | |
| 60 fnFs <- sort(p1) | |
| 61 fnRs <- sort(p2) | |
| 62 sample.names <- sort(sample.names) | |
| 63 | |
| 64 save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_test.Rdata'))) | |
| 65 #load(file = file.path(outdir, paste0(prefix, 'state_test.Rdata'))) | |
| 66 | |
| 67 ## print for review | |
| 68 to_view <- data.frame(sample.names, fnFs, fnRs) | |
| 69 cat("The following fastq files were found:\n") | |
| 70 print(to_view) | |
| 71 | |
| 72 # Perform quality filtering and trimming--------------------------------- | |
| 73 ## assign new names to samples | |
| 74 filtFs <- file.path(outdir, paste0(sample.names, 'F_filt.fastq.gz')) | |
| 75 filtRs <- file.path(outdir, paste0(sample.names, 'R_filt.fastq.gz')) | |
| 76 | |
| 77 ## plot forward and reverse quality so that user can decide on filtering parameters | |
| 78 cat('Plotting quality profile of forward reads...\n') | |
| 79 Fqp1 <- plotQualityProfile(fnFs[1]) | |
| 80 #print(Fqp1) | |
| 81 ggsave(sprintf('%s_forward_1_qualityprofile.pdf',prefix), Fqp1, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 82 #ggsave(sprintf('%s_forward_1_qualityprofile.emf',prefix), Fqp1, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 83 Fqp2 <- plotQualityProfile(fnFs[2]) | |
| 84 #print(Fqp2) | |
| 85 ggsave(sprintf('%s_forward_2_qualityprofile.pdf',prefix),Fqp2, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 86 #ggsave(sprintf('%s_forward_2_qualityprofile.emf',prefix), Fqp2, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 87 #cat('Which position would you like to truncate the forward reads at?\nPlease use the red-dashed lines as a guide, where they stop appearing indicates good quality.\nNOTE: Do NOT over-trim! You still require overlap between your forward and reverse reads in order to merge them later!\n') | |
| 88 len1 <- 240 | |
| 89 cat('Plotting quality profile of reverse reads...\n') | |
| 90 Rqp1 <- plotQualityProfile(fnRs[1]) | |
| 91 #print(Rqp1) | |
| 92 ggsave(sprintf('%s_reverse_1_qualityprofile.pdf',prefix),Rqp1, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 93 #ggsave(sprintf('%s_reverse_1_qualityprofile.emf',prefix), Rqp1, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 94 Rqp2 <- plotQualityProfile(fnRs[2]) | |
| 95 #print(Rqp2) | |
| 96 ggsave(sprintf('%s_reverse_2_qualityprofile.pdf',prefix), Rqp2, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 97 #ggsave(sprintf('%s_reverse_2_qualityprofile.emf',prefix), Rqp2, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 98 #cat('Which position would you like to truncate the forward reads at?\nPlease use the red-dashed lines as a guide, where they stop appearing indicates good quality.\nNOTE: Do NOT over-trim! You still require overlap between your forward and reverse reads in order to merge them later!\n') | |
| 99 len2 <- 240 | |
| 100 | |
| 101 ## filter and trim | |
| 102 ## remaining parameters set to recommended defaults | |
| 103 ## maxN must be set to 0 (DADA2 requries no Ns) | |
| 104 ## The maxEE parameter sets the maximum number of "expected errors" allowed in a read, which is a better filter than simply averaging quality scores. | |
| 105 ## If not using Windows, you may set multithread to TRUE | |
| 106 ## NOTE: Do not use the truncLen parameter for ITS sequencing | |
| 107 ## trimLeft needs to be varied based on the size of your primers (i.e. it is used to trim your primer sequences)!! | |
| 108 cat('Filtering and trimming sequences...\n') | |
| 109 out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen=c(len1,len2), maxN=0, maxEE=c(2,2), truncQ=2, rm.phix=T, compress=T, multithread=threads, trimLeft=15) | |
| 110 | |
| 111 ## have user review read count changes, and relax error rate if too many reads are lost | |
| 112 ## for example, you may especially want to relax the number of expected errors on the reverse reads (i.e. maxEE=c(2,5)), as the reverse is prone to error on the Illumina sequencing platform | |
| 113 print(head(out)) | |
| 114 check2 <- T | |
| 115 while(check2 == F){ | |
| 116 maxF <- numeric_input("What would you like the maximum number of expected errors in the forward reads to be?\nDefault 2:", 2) | |
| 117 maxR <- numeric_input("What would you like the maximum number of expected errors in the reverse reads to be?\nDefault 5:", 5) | |
| 118 out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen=c(len1,len2), maxN=0, maxEE=c(maxF,maxR), truncQ=2, rm.phix=T, compress=T, multithread=threads) | |
| 119 print(head(out)) | |
| 120 check2 <- yn_input('Proceed? If you lost too many reads, you can choose to not proceed and you will have the option to relax the error rate. Default yes:',T) | |
| 121 } | |
| 122 | |
| 123 # Have DADA2 learn the error rates----------------------------------------------- | |
| 124 ## If not using Windows, you may set multithread to TRUE | |
| 125 read.subset <- 1e6 | |
| 126 cat('Learning error rate of forward reads...\n') | |
| 127 errF <- learnErrors(filtFs, nreads=read.subset, multithread=threads) | |
| 128 | |
| 129 ## have user check estimated error rates | |
| 130 ## note the calculations are done with a subset of the total reads, as it is computationally intensive | |
| 131 ## if the fit is poor, the user has the option to try again with an increased subset number of reads | |
| 132 Error_f <- plotErrors(errF, nominalQ = T) | |
| 133 #print(Error_f) | |
| 134 ggsave(sprintf('%s_forward_Error_plot.pdf',prefix), Error_f, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 135 #ggsave(sprintf('%s_forward_Error_plot.emf',prefix), Error_f, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 136 check3a <- T | |
| 137 while(check3a == F){ | |
| 138 read.subset <- numeric_input('Please specify the number of reads you would like dada2 to utilize to calculate the error rate.\nThe default previously used was 1e6.\nThe newly recommended default is 10-fold greater,\n1e7:',1e7) | |
| 139 errF <- learnErrors(filtFs, nreads=read.subset, multithread=threads) | |
| 140 print(Error_f) | |
| 141 ggsave(sprintf('%s_forward_Error_plot.pdf',prefix), path = outdir, width = 20,height = 15,units = c("cm")) | |
| 142 ggsave(sprintf('%s_forward_Error_plot.emf',prefix), path = outdir, width = 20,height = 15,units = c("cm")) | |
| 143 check3a <- yn_input('Proceed?\nThe estimated error rate (black line) should fit to the observed error rates for each consensus quality score (black points).\nAdditionally, the error rates expected under the nominal definition of the Q-value (quality score) should decrease as the quality score increases (or flat-line).\nIf you do not have a good fit, you may want dada2 to re-learn the error rates with a higher number of reads in the utilized subset.\nA subset of reads is always used as the algorithm is computationally intensive.\nDefault yes:',T) | |
| 144 } | |
| 145 | |
| 146 | |
| 147 ## also do for reverseL | |
| 148 cat('Learning error rate of reverse reads...\n') | |
| 149 errR <- learnErrors(filtRs, nreads=read.subset, multithread=threads) | |
| 150 Error_r <- plotErrors(errR, nominalQ=T) | |
| 151 #print(Error_r) | |
| 152 ggsave(sprintf('%s_reverse_Error_plot.pdf',prefix), Error_r, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 153 #ggsave(sprintf('%s_reverse_Error_plot.emf',prefix), Error_r, path = outdir, width = 20,height = 15,units = c("cm")) | |
| 154 check3b <- T | |
| 155 while(check3b == F){ | |
| 156 read.subset <- numeric_input('Please specify the number of reads you would like dada2 to utilize to calculate the error rate.\nThe default previously used was 1e6.\nThe newly recommended default is 10-fold greater,\n1e7:',1e7) | |
| 157 errR <- learnErrors(filtRs, nreads=read.subset, multithread=threads) | |
| 158 print(Error_r) | |
| 159 ggsave(sprintf('%s_reverse_Error_plot.pdf',prefix), path = outdir, width = 20,height = 15,units = c("cm")) | |
| 160 #ggsave(sprintf('%s_reverse_Error_plot.emf',prefix), path = outdir, width = 20,height = 15,units = c("cm")) | |
| 161 check3b <- yn_input('Proceed?\nThe estimated error rate (black line) should fit to the observed error rates for each consensus quality score (black points).\nAdditionally, the error rates expected under the nominal definition of the Q-value (quality score) should decrease as the quality score increases (or flat-line).\nIf you do not have a good fit, you may want dada2 to re-learn the error rates with a higher number of reads in the utilized subset.\nA subset of reads is always used as the algorithm is computationally intensive.\nDefault yes:',T) | |
| 162 } | |
| 163 | |
| 164 save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_learning.Rdata'))) | |
| 165 #load(file = file.path(outdir, paste0(prefix, 'state_post_learning.Rdata'))) | |
| 166 | |
| 167 # Dereplicate sequences to generate unique sequence fastq files with corresponding count tables------------------------- | |
| 168 ## NOTE: if your dataset is huge, you may run out of RAM. Please see https://benjjneb.github.io/dada2/bigdata.html for details. | |
| 169 cat('Dereplicating forward reads...\n') | |
| 170 derepFs <- derepFastq(filtFs, verbose=T) | |
| 171 cat('Dereplicating reverse reads...\n') | |
| 172 derepRs <- derepFastq(filtRs, verbose=T) | |
| 173 | |
| 174 ## name the derep-class objects by sample names | |
| 175 names(derepFs) <- sample.names | |
| 176 names(derepRs) <- sample.names | |
| 177 | |
| 178 save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_derep.Rdata'))) | |
| 179 #load(file = file.path(outdir, paste0(prefix, 'state_post_derep.Rdata'))) | |
| 180 | |
| 181 # Infer sequence variants using learned error rates--------------------------------- | |
| 182 ## If not using Windows, you may set multithread to TRUE | |
| 183 ## NOTE: if your dataset is huge, you may run out of RAM. Please see https://benjjneb.github.io/dada2/bigdata.html for details. | |
| 184 ## NOTE2: you can use DADA2 for 454 or IonTorrent data as well. Please see https://benjjneb.github.io/dada2/tutorial.html. | |
| 185 s.pool = F | |
| 186 cat('Inferring sequence variants of forward reads...\n') | |
| 187 dadaFs <- dada(derepFs, err=errF, pool=s.pool, multithread=threads) | |
| 188 | |
| 189 ## have user inspect detected number of sequence variants, to ensure it is logical based on the biological context of their samples | |
| 190 ## if you have low sampling depths, you may not want to process each sample independently as per default, but set pool=T. It gives better results at increased computation time. The user will have the option to do this if the number of sequence variants doesn't make sense. | |
| 191 print(dadaFs[[1]]) | |
| 192 check4 <- T | |
| 193 if(check4 == F){ | |
| 194 s.pool = T | |
| 195 dadaFs <- dada(derepFs, err=errF, pool=s.pool, multithread=threads) | |
| 196 print(dadaFs[[1]]) | |
| 197 cat('Hopefully, these results make more sense.\nOtherwise, there is not much more you can do except start over!\n') | |
| 198 check <- yn_input('Proceed? Default yes, no to quit:',T) | |
| 199 if(check == F){ | |
| 200 stop() | |
| 201 } | |
| 202 } | |
| 203 | |
| 204 ## also do for reverse, but don't need to re-check as you need to keep the pool consistent between the forward and reverse! | |
| 205 cat('Inferring sequence variants of reversed reads...\n') | |
| 206 dadaRs <- dada(derepRs, err=errR, pool=s.pool, multithread=threads) | |
| 207 | |
| 208 save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_dada.Rdata'))) | |
| 209 #load(file = file.path(outdir, paste0(prefix, 'state_post_dada.Rdata'))) | |
| 210 | |
| 211 | |
| 212 # Merge forward and reverse reads------------------------------------------------- | |
| 213 cat('Merging paired-end reads...\n') | |
| 214 mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs, verbose=T) | |
| 215 #cat('Most of your reads should have been retained (i.e. were able to merge, see above).\nOtherwise, there is not much more you can do except start over (i.e. did you over-trim your sequences??)!\n') | |
| 216 check <- T | |
| 217 if(check == F){ | |
| 218 stop() | |
| 219 } | |
| 220 | |
| 221 # Construct sequences table------------------------------------------------------- | |
| 222 cat('Constructing sequence table...\n') | |
| 223 seqtab <- makeSequenceTable(mergers) | |
| 224 | |
| 225 save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_merge.Rdata'))) | |
| 226 #load(file = file.path(outdir, paste0(prefix, 'state_post_merge.Rdata'))) | |
| 227 | |
| 228 | |
| 229 ## inspect distribution of sequence lengths | |
| 230 ## give user the option to filter out overly long or short sequneces | |
| 231 cat('Sequence length distribution listed below:\n') | |
| 232 print(table(nchar(getSequences(seqtab)))) | |
| 233 check5 <- T | |
| 234 if(check5 == F){ | |
| 235 min.cutoff <- numeric_input('Please input desired minimum length of sequences:',NULL) | |
| 236 max.cutoff <- numeric_input('Please input desired maximum length of sequences:',NULL) | |
| 237 seqtab <- seqtab[,nchar(colnames(seqtab)) %in% seq(min.cutoff,max.cutoff)] | |
| 238 } | |
| 239 | |
| 240 # Remove chimeras------------------------------------------------------------------ | |
| 241 ## If not using Windows, you may set multithread to TRUE | |
| 242 cat('Removing chimeras...\n') | |
| 243 seqtab.nochim <- removeBimeraDenovo(seqtab, method='consensus', multithread=threads, verbose=T) | |
| 244 | |
| 245 ## display percentage of chimeras removed | |
| 246 ## this number should be small (<5%), otherwise some processing parameters need to be revisited | |
| 247 percent.nochim <- (sum(seqtab.nochim)/sum(seqtab))*100 | |
| 248 percent.nochim <- paste(as.character(percent.nochim),'of reads retained after chimera removal.\n',sep=' ') | |
| 249 cat(percent.nochim) | |
| 250 #cat('Most of your reads should have been retained.\nOtherwise, there is not much more you can do except start over!\n') | |
| 251 check <- T | |
| 252 if(check == F){ | |
| 253 stop() | |
| 254 } | |
| 255 | |
| 256 # Final sanity check-------------------------------------------------------------- | |
| 257 ## track reads removed throughout the pipeline | |
| 258 ## If processing a single sample, remove the sapply calls: e.g. replace sapply(dadaFs, getN) with getN(dadaFs) | |
| 259 getN <- function(x) sum(getUniques(x)) | |
| 260 track <- cbind(out, sapply(dadaFs, getN), sapply(mergers, getN), rowSums(seqtab), rowSums(seqtab.nochim)) | |
| 261 colnames(track) <- c("input", "filtered", "denoised", "merged", "tabled", "nonchim") | |
| 262 rownames(track) <- sample.names | |
| 263 print(head(track)) | |
| 264 #cat('Most of your reads should have been retained.\nOtherwise, there is not much more you can do except start over!\n') | |
| 265 check <- T | |
| 266 if(check == F){ | |
| 267 stop() | |
| 268 } | |
| 269 | |
| 270 write.csv(track,file=file.path(outdir, sprintf('%s_read_count-quality_control.csv',prefix))) | |
| 271 | |
| 272 save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_chimera.Rdata'))) | |
| 273 # load(file = file.path(outdir, paste0(prefix, 'state_post_chimera.Rdata'))) | |
| 274 | |
| 275 # Assign taxonomy----------------------------------------------------------------- | |
| 276 ## require silva database files | |
| 277 ## If not using Windows, you may set multithread to TRUE | |
| 278 ## Minimum boot strap should be 80, but for sequnce length =< 250 Minimum bootstrap set to 50 (which is also the default) | |
| 279 | |
| 280 ## SILVA | |
| 281 cat('Assigning taxonomy to genus level using SILVA...\n') | |
| 282 taxa_silva <- assignTaxonomy(seqtab.nochim, file.path(wd,"silva_nr_v132_train_set.fa.gz"), multithread=threads, minBoot=80, tryRC=T) | |
| 283 cat('Assigning taxonomy at species level using SILVA...\n') | |
| 284 taxa_silva <- addSpecies(taxa_silva, file.path(wd,"silva_species_assignment_v132.fa.gz"), allowMultiple=T, tryRC=T) | |
| 285 write.csv(taxa_silva,file=file.path(outdir, sprintf('%s_taxonomy_silva.csv',prefix))) | |
| 286 | |
| 287 ## RDP - used for copy number correction | |
| 288 cat('Assigning taxonomy to genus level using RDP...\n') | |
| 289 taxa_rdp <- assignTaxonomy(seqtab.nochim, file.path(wd,"rdp_train_set_16.fa.gz"), multithread=threads, minBoot=80, tryRC=T) | |
| 290 cat('Assigning taxonomy at species level using RDP...\n') | |
| 291 taxa_rdp <- addSpecies(taxa_rdp, file.path(wd,"rdp_species_assignment_16.fa.gz"), allowMultiple=T, tryRC=T) | |
| 292 write.csv(taxa_rdp,file=file.path(outdir, sprintf('%s_taxonomy_rdp.csv',prefix))) | |
| 293 save(list = ls(all.names = TRUE), file = file.path(outdir, paste0(prefix, 'state_post_tax.Rdata'))) | |
| 294 #load(file = file.path(outdir, paste0(prefix, 'state_post_tax.Rdata'))) | |
| 295 | |
| 296 | |
| 297 # Return data---------------------------------------------------------------------- | |
| 298 cat('Returning data...\n') | |
| 299 ## create fasta file | |
| 300 ASVs <- dada2fasta(outdir, seqtab.nochim, prefix) | |
| 301 ## create master dataframe for each classification | |
| 302 | |
| 303 ## Assigning ASVs to count table | |
| 304 sequences <- colnames(seqtab.nochim) | |
| 305 colnames(seqtab.nochim) <- ASVs | |
| 306 seqtab.nochim <- t(seqtab.nochim) | |
| 307 | |
| 308 ## silva | |
| 309 taxa_silva <- taxa_silva[match(sequences, rownames(taxa_silva)),] | |
| 310 rownames(taxa_silva) <- ASVs | |
| 311 d <- merge(seqtab.nochim, taxa_silva, by='row.names') | |
| 312 colnames(d)[1] <- 'ASV' | |
| 313 ## create database of all information | |
| 314 db <- dbConnect(RSQLite::SQLite(), file.path(outdir, sprintf('%s.sqlite',prefix))) | |
| 315 dbWriteTable(db, 'dada2_results_silva', d) | |
| 316 ## write master dataframe for user, and return it | |
| 317 write.table(d, file.path(outdir, sprintf('%s_dada2_results_silva.txt',prefix)), sep='\t', quote=F, row.names=F) | |
| 318 | |
| 319 ## rdp | |
| 320 taxa_rdp <- taxa_rdp[match(sequences, rownames(taxa_rdp)),] | |
| 321 rownames(taxa_rdp) <- ASVs | |
| 322 d <- merge(seqtab.nochim, taxa_rdp, by='row.names') | |
| 323 colnames(d)[1] <- 'ASV' | |
| 324 ## create database of all information | |
| 325 dbWriteTable(db, 'dada2_results_rdp', d) | |
| 326 dbDisconnect(db) | |
| 327 ## write master dataframe for user, and return it | |
| 328 write.table(d, file.path(outdir, sprintf('%s_dada2_results_rdp.txt',prefix)), sep='\t', quote=F, row.names=F) | |
| 329 return(d) | |
| 330 | |
| 331 cat('DADA2 processing completed!\n') | |
| 332 } | |
| 333 | |
| 334 | |
| 335 option_list = list( | |
| 336 make_option(c("-t", "--threads"), type = "integer", default = 1, | |
| 337 help = "number of threads to use", metavar = "THREADS") | |
| 338 ); | |
| 339 | |
| 340 opt_parser = OptionParser(option_list=option_list); | |
| 341 opt = parse_args(opt_parser); | |
| 342 | |
| 343 print(opt) | |
| 344 | |
| 345 threads = as.integer(Sys.getenv("NSLOTS", "1")) | |
| 346 | |
| 347 exit(1) | |
| 348 | |
| 349 | |
| 350 | |
| 351 dada2run(wd='/work/haange/Leaky_gut/', r_path='/work/haange/Leaky_gut', outdir='/work/haange/Leaky_gut/results', prefix='Leaky_gut') | |
| 352 |
