Mercurial > repos > kls286 > chap_test_20230328
view MLaaS/README.md @ 0:cbbe42422d56 draft
planemo upload for repository https://github.com/CHESSComputing/ChessAnalysisPipeline/tree/galaxy commit 1401a7e1ae007a6bda260d147f9b879e789b73e0-dirty
author | kls286 |
---|---|
date | Tue, 28 Mar 2023 15:07:30 +0000 |
parents | |
children |
line wrap: on
line source
## MLaaS end-to-end example using MNIST dataset MLaaS stands for Machine Learning as a Service, and here we'll provide end-to-end example based on MNIST dataset using Python [Keras](https://keras.io/) ML framework for training part, and [TFaas](https://github.com/vkuznet/TFaaS) ML framework for inference part. ### Requirements (environment) To proceed with ML trainig we need to acquire MNIST dataset. We will assume that you have a box where recent version of python is installed, please note that instructions were tested with `Python 3.10.10` ``` # create mnist_env, here python refers to python 3.10.10 python -m venv mnist_env # download mnist dataset for training purposes in numpy gziped arrays curl -ksLO https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz # download MNIST dataset for training purposes in pkl.gz data-format curl -ksLO https://s3.amazonaws.com/img-datasets/mnist.pkl.gz # download MNIST images # download MNIST actual images which we will use within inference curl -O http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz ``` ### Train ML model Below you can see fully tested Keras mased ML codebase to train simple convolutional neural network over MNIST dataset (save this code as `ktrain.py`): ``` #!/usr/bin/env python #-*- coding: utf-8 -*- #pylint: disable= """ File : ktrain.py Author : Valentin Kuznetsov <vkuznet AT gmail dot com> Description: Keras based ML network to train over MNIST dataset """ # system modules import os import sys import json import gzip import pickle import argparse # third-party modules import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras import backend as K from tensorflow.python.tools import saved_model_utils def modelGraph(model_dir): """ Provide input/output names used by TF Graph along with graph itself The code is based on TF saved_model_cli.py script. """ input_names = [] output_names = [] tag_sets = saved_model_utils.get_saved_model_tag_sets(model_dir) for tag_set in sorted(tag_sets): print('%r' % ', '.join(sorted(tag_set))) meta_graph_def = saved_model_utils.get_meta_graph_def(model_dir, tag_set[0]) for key in meta_graph_def.signature_def.keys(): meta = meta_graph_def.signature_def[key] if hasattr(meta, 'inputs') and hasattr(meta, 'outputs'): inputs = meta.inputs outputs = meta.outputs input_signatures = list(meta.inputs.values()) input_names = [signature.name for signature in input_signatures] if len(input_names) > 0: output_signatures = list(meta.outputs.values()) output_names = [signature.name for signature in output_signatures] return input_names, output_names, meta_graph_def def readData(fin, num_classes): """ Helper function to read MNIST data and provide it to upstream code, e.g. to the training layer """ # Load the data and split it between train and test sets # (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() f = gzip.open(fin, 'rb') if sys.version_info < (3,): mnist_data = pickle.load(f) else: mnist_data = pickle.load(f, encoding='bytes') f.close() (x_train, y_train), (x_test, y_test) = mnist_data # Scale images to the [0, 1] range x_train = x_train.astype("float32") / 255 x_test = x_test.astype("float32") / 255 # Make sure images have shape (28, 28, 1) x_train = np.expand_dims(x_train, -1) x_test = np.expand_dims(x_test, -1) print("x_train shape:", x_train.shape) print(x_train.shape[0], "train samples") print(x_test.shape[0], "test samples") # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) return x_train, y_train, x_test, y_test def train(fin, fout=None, model_name=None, epochs=1, batch_size=128, h5=False): """ train function for MNIST """ # Model / data parameters num_classes = 10 input_shape = (28, 28, 1) # create ML model model = keras.Sequential( [ keras.Input(shape=input_shape), layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dropout(0.5), layers.Dense(num_classes, activation="softmax"), ] ) model.summary() print("model input", model.input, type(model.input), model.input.__dict__) print("model output", model.output, type(model.output), model.output.__dict__) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # train model x_train, y_train, x_test, y_test = readData(fin, num_classes) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) # evaluate trained model score = model.evaluate(x_test, y_test, verbose=0) print("Test loss:", score[0]) print("Test accuracy:", score[1]) print("save model to", fout) writer(fout, model_name, model, input_shape, h5) def writer(fout, model_name, model, input_shape, h5=False): """ Writer provide write function for given model """ if not fout: return model.save(fout) if h5: model.save('{}/{}'.format(fout, h5), save_format='h5') pbModel = '{}/saved_model.pb'.format(fout) pbtxtModel = '{}/saved_model.pbtxt'.format(fout) convert(pbModel, pbtxtModel) # get meta-data information about our ML model input_names, output_names, model_graph = modelGraph(model_name) print("### input", input_names) print("### output", output_names) # ML uses (28,28,1) shape, i.e. 28x28 black-white images # if we'll use color images we'll use shape (28, 28, 3) img_channels = input_shape[2] # last item represent number of colors meta = {'name': model_name, 'model': 'saved_model.pb', 'labels': 'labels.txt', 'img_channels': img_channels, 'input_name': input_names[0].split(':')[0], 'output_name': output_names[0].split(':')[0], 'input_node': model.input.name, 'output_node': model.output.name } with open(fout+'/params.json', 'w') as ostream: ostream.write(json.dumps(meta)) with open(fout+'/labels.txt', 'w') as ostream: for i in range(0, 10): ostream.write(str(i)+'\n') with open(fout + '/model.graph', 'wb') as ostream: ostream.write(model_graph.SerializeToString()) def convert(fin, fout): """ convert input model.pb into output model.pbtxt Based on internet search: - https://www.tensorflow.org/guide/saved_model - https://www.programcreek.com/python/example/123317/tensorflow.core.protobuf.saved_model_pb2.SavedModel """ import google.protobuf from tensorflow.core.protobuf import saved_model_pb2 import tensorflow as tf saved_model = saved_model_pb2.SavedModel() with open(fin, 'rb') as f: saved_model.ParseFromString(f.read()) with open(fout, 'w') as f: f.write(google.protobuf.text_format.MessageToString(saved_model)) class OptionParser(): def __init__(self): "User based option parser" self.parser = argparse.ArgumentParser(prog='PROG') self.parser.add_argument("--fin", action="store", dest="fin", default="", help="Input MNIST file") self.parser.add_argument("--fout", action="store", dest="fout", default="", help="Output models area") self.parser.add_argument("--model", action="store", dest="model", default="mnist", help="model name") self.parser.add_argument("--epochs", action="store", dest="epochs", default=1, help="number of epochs to use in ML training") self.parser.add_argument("--batch_size", action="store", dest="batch_size", default=128, help="batch size to use in training") self.parser.add_argument("--h5", action="store", dest="h5", default="mnist", help="h5 model file name") def main(): "Main function" optmgr = OptionParser() opts = optmgr.parser.parse_args() train(opts.fin, opts.fout, model_name=opts.model, epochs=opts.epochs, batch_size=opts.batch_size, h5=opts.h5) if __name__ == '__main__': main() ``` ### Training process We will train our model using the following command (for simplicity we skip warning messages from TF and irrelevant printouts): ``` # here fout=mnist represents mnist directory where we'll stored our trained model # and model=mnist is the name of the model we'll use later in inference ./ktrain.py --fin=./mnist.pkl.gz --fout=mnist --model=mnist ... x_train shape: (60000, 28, 28, 1) 60000 train samples 10000 test samples Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 26, 26, 32) 320 max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0 ) conv2d_1 (Conv2D) (None, 11, 11, 64) 18496 max_pooling2d_1 (MaxPooling (None, 5, 5, 64) 0 2D) flatten (Flatten) (None, 1600) 0 dropout (Dropout) (None, 1600) 0 dense (Dense) (None, 10) 16010 ================================================================= Total params: 34,826 Trainable params: 34,826 Non-trainable params: 0 _________________________________________________________________ 422/422 [==============================] - 37s 84ms/step - loss: 0.3645 - accuracy: 0.8898 - val_loss: 0.0825 - val_accuracy: 0.9772 Test loss: 0.09409885853528976 Test accuracy: 0.9703999757766724 save model to mnist ### input ['serving_default_input_1:0'] ### output ['StatefulPartitionedCall:0'] ``` When this process is over you'll find `mnist` directory with the following content: ``` shell# ls mnist assets keras_metadata.pb model.graph saved_model.pb variables fingerprint.pb labels.txt params.json saved_model.pbtxt ``` - `saved_model.pb` represents trained ML model in protobuffer data-format - `saved_model.pbtxt` represents trained ML model in text protobuffer representation - `labels.txt` contains our image labels - `params.json` contains meta-data used by TFaaS and it has the following content: ``` cat mnist/params.json | jq { "name": "mnist", "model": "saved_model.pb", "labels": "labels.txt", "img_channels": 1, "input_name": "serving_default_input_1", "output_name": "StatefulPartitionedCall", "input_node": "input_1", "output_node": "dense/Softmax:0" } ``` Here you see, that our ML model is called `mnist`, the model is stored in `saved_model.pb` file, and more importantly this file contains the input and output tensor names and nodes which we need to provide for TFaaS to server our predictions. ### Inference server Now, it is time to start our inference server. You can find its code in `src/go` area. To build the code you need ``` # download TF library and includes for your OS, e.g. macOS build curl -ksLO https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-darwin-x86_64-2.11.0.tar.gz # or linux build curl -ksLO https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-2.11.0.tar.gz # or linux GPU build curl -ksLO https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-linux-x86_64-2.11.0.tar.gz # provide TF include area location to go build command # the /opt/tensorflow/include is are where TF includes are export CGO_CPPFLAGS="-I/opt/tensorflow/include" # compile the code make # it will produce tfaas executable # to run the code we need to setup `DYLD_LIBRARY_PATH` export DYLD_LIBRARY_PATH=/opt/tensorflow/lib ./tfaas -config config.json ``` where `config.json` has the following form (please refer for more details): ``` { "port": 8083, "modelDir": "models", "staticDir": "static", "configProto": "", "base": "", "serverKey": "", "serverCrt": "", "verbose": 1 } ``` ### Serving predictions with TFaaS inference server Finally, we are ready for the inference part. - upload your ML model to TFaaS server ``` # create tarball of your mnist ML trained model tar cfz mnist.tar.gz mnist # upload tarball to TFaaS server curl -v -X POST -H "Content-Encoding: gzip" \ -H "Content-Type: application/octet-stream" \ --data-binary @./mnist.tar.gz \ http://localhost:8083/upload # check your model presence curl http://localhost:8083/models # generate image from MNIST dataset you want to use for prediction # img1.png will contain number 1, img4.png will contain number 4 ./mnist_img.py --fout img1.png --imgid=3 ./mnist_img.py --fout img4.png --imgid=2 # ask for prediction of your image curl http://localhost:8083/predict/image -F 'image=@./img1.png' -F 'model=mnist' [0,1,0,0,0,0,0,0,0,0] curl http://localhost:8083/predict/image -F 'image=@./img4.png' -F 'model=mnist' [0,0,0,0,1,0,0,0,0,0] ```