Mercurial > repos > kls286 > chap_test_20230328
comparison build/bdist.linux-x86_64/egg/CHAP/models/integration.py @ 0:cbbe42422d56 draft
planemo upload for repository https://github.com/CHESSComputing/ChessAnalysisPipeline/tree/galaxy commit 1401a7e1ae007a6bda260d147f9b879e789b73e0-dirty
author | kls286 |
---|---|
date | Tue, 28 Mar 2023 15:07:30 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:cbbe42422d56 |
---|---|
1 import copy | |
2 from functools import cache, lru_cache | |
3 import json | |
4 import logging | |
5 import os | |
6 from time import time | |
7 from typing import Literal, Optional | |
8 | |
9 from msnctools.general import input_menu | |
10 from multiprocessing.pool import ThreadPool | |
11 from nexusformat.nexus import (NXdata, | |
12 NXdetector, | |
13 NXfield, | |
14 NXprocess, | |
15 NXroot) | |
16 import numpy as np | |
17 from pydantic import (BaseModel, | |
18 validator, | |
19 constr, | |
20 conlist, | |
21 conint, | |
22 confloat, | |
23 FilePath) | |
24 import pyFAI, pyFAI.multi_geometry, pyFAI.units | |
25 from pyspec.file.tiff import TiffFile | |
26 | |
27 from .map import MapConfig, SpecScans | |
28 | |
29 | |
30 class Detector(BaseModel): | |
31 """ | |
32 Detector class to represent a single detector used in the experiment. | |
33 | |
34 :param prefix: Prefix of the detector in the SPEC file. | |
35 :type prefix: str | |
36 :param poni_file: Path to the poni file. | |
37 :type poni_file: str | |
38 :param mask_file: Optional path to the mask file. | |
39 :type mask_file: str, optional | |
40 """ | |
41 prefix: constr(strip_whitespace=True, min_length=1) | |
42 poni_file: FilePath | |
43 mask_file: Optional[FilePath] | |
44 @validator('poni_file', allow_reuse=True) | |
45 def validate_poni_file(cls, poni_file): | |
46 """ | |
47 Validate the poni file by checking if it's a valid PONI file. | |
48 | |
49 :param poni_file: Path to the poni file. | |
50 :type poni_file: str | |
51 :raises ValueError: If poni_file is not a valid PONI file. | |
52 :returns: Absolute path to the poni file. | |
53 :rtype: str | |
54 """ | |
55 poni_file = os.path.abspath(poni_file) | |
56 try: | |
57 ai = azimuthal_integrator(poni_file) | |
58 except: | |
59 raise(ValueError(f'{poni_file} is not a valid PONI file')) | |
60 else: | |
61 return(poni_file) | |
62 @validator('mask_file', allow_reuse=True) | |
63 def validate_mask_file(cls, mask_file, values): | |
64 """ | |
65 Validate the mask file. If a mask file is provided, it checks if it's a valid TIFF file. | |
66 | |
67 :param mask_file: Path to the mask file. | |
68 :type mask_file: str or None | |
69 :param values: A dictionary of the Detector fields. | |
70 :type values: dict | |
71 :raises ValueError: If mask_file is provided and it's not a valid TIFF file. | |
72 :raises ValueError: If `'poni_file'` is not provided in `values`. | |
73 :returns: Absolute path to the mask file or None. | |
74 :rtype: str or None | |
75 """ | |
76 if mask_file is None: | |
77 return(mask_file) | |
78 else: | |
79 mask_file = os.path.abspath(mask_file) | |
80 poni_file = values.get('poni_file') | |
81 if poni_file is None: | |
82 raise(ValueError('Cannot validate mask file without a PONI file.')) | |
83 else: | |
84 try: | |
85 mask_array = get_mask_array(mask_file, poni_file) | |
86 except BaseException as e: | |
87 raise(ValueError(f'Unable to open {mask_file} as a TIFF file')) | |
88 else: | |
89 return(mask_file) | |
90 @property | |
91 def azimuthal_integrator(self): | |
92 return(azimuthal_integrator(self.poni_file)) | |
93 @property | |
94 def mask_array(self): | |
95 return(get_mask_array(self.mask_file, self.poni_file)) | |
96 | |
97 @cache | |
98 def azimuthal_integrator(poni_file:str): | |
99 if not isinstance(poni_file, str): | |
100 poni_file = str(poni_file) | |
101 return(pyFAI.load(poni_file)) | |
102 @cache | |
103 def get_mask_array(mask_file:str, poni_file:str): | |
104 if mask_file is not None: | |
105 if not isinstance(mask_file, str): | |
106 mask_file = str(mask_file) | |
107 with TiffFile(mask_file) as tiff: | |
108 mask_array = tiff.asarray() | |
109 else: | |
110 mask_array = np.zeros(azimuthal_integrator(poni_file).detector.shape) | |
111 return(mask_array) | |
112 | |
113 class IntegrationConfig(BaseModel): | |
114 """ | |
115 Class representing the configuration for a raw detector data integration. | |
116 | |
117 :ivar tool_type: type of integration tool; always set to "integration" | |
118 :type tool_type: str, optional | |
119 :ivar title: title of the integration | |
120 :type title: str | |
121 :ivar integration_type: type of integration, one of "azimuthal", "radial", or "cake" | |
122 :type integration_type: str | |
123 :ivar detectors: list of detectors used in the integration | |
124 :type detectors: List[Detector] | |
125 :ivar radial_units: radial units for the integration, defaults to `'q_A^-1'` | |
126 :type radial_units: str, optional | |
127 :ivar radial_min: minimum radial value for the integration range | |
128 :type radial_min: float, optional | |
129 :ivar radial_max: maximum radial value for the integration range | |
130 :type radial_max: float, optional | |
131 :ivar radial_npt: number of points in the radial range for the integration | |
132 :type radial_npt: int, optional | |
133 :ivar azimuthal_units: azimuthal units for the integration | |
134 :type azimuthal_units: str, optional | |
135 :ivar azimuthal_min: minimum azimuthal value for the integration range | |
136 :type azimuthal_min: float, optional | |
137 :ivar azimuthal_max: maximum azimuthal value for the integration range | |
138 :type azimuthal_max: float, optional | |
139 :ivar azimuthal_npt: number of points in the azimuthal range for the integration | |
140 :type azimuthal_npt: int, optional | |
141 :ivar error_model: error model for the integration, one of "poisson" or "azimuthal" | |
142 :type error_model: str, optional | |
143 """ | |
144 tool_type: Literal['integration'] = 'integration' | |
145 title: constr(strip_whitespace=True, min_length=1) | |
146 integration_type: Literal['azimuthal', 'radial', 'cake'] | |
147 detectors: conlist(item_type=Detector, min_items=1) | |
148 radial_units: str = 'q_A^-1' | |
149 radial_min: confloat(ge=0) | |
150 radial_max: confloat(gt=0) | |
151 radial_npt: conint(gt=0) = 1800 | |
152 azimuthal_units: str = 'chi_deg' | |
153 azimuthal_min: confloat(ge=-180) = -180 | |
154 azimuthal_max: confloat(le=360) = 180 | |
155 azimuthal_npt: conint(gt=0) = 3600 | |
156 error_model: Optional[Literal['poisson', 'azimuthal']] | |
157 sequence_index: Optional[conint(gt=0)] | |
158 @validator('radial_units', allow_reuse=True) | |
159 def validate_radial_units(cls, radial_units): | |
160 """ | |
161 Validate the radial units for the integration. | |
162 | |
163 :param radial_units: unvalidated radial units for the integration | |
164 :type radial_units: str | |
165 :raises ValueError: if radial units are not one of the recognized radial units | |
166 :return: validated radial units | |
167 :rtype: str | |
168 """ | |
169 if radial_units in pyFAI.units.RADIAL_UNITS.keys(): | |
170 return(radial_units) | |
171 else: | |
172 raise(ValueError(f'Invalid radial units: {radial_units}. Must be one of {", ".join(pyFAI.units.RADIAL_UNITS.keys())}')) | |
173 @validator('azimuthal_units', allow_reuse=True) | |
174 def validate_azimuthal_units(cls, azimuthal_units): | |
175 """ | |
176 Validate that `azimuthal_units` is one of the keys in the | |
177 `pyFAI.units.AZIMUTHAL_UNITS` dictionary. | |
178 | |
179 :param azimuthal_units: The string representing the unit to be validated. | |
180 :type azimuthal_units: str | |
181 :raises ValueError: If `azimuthal_units` is not one of the keys in `pyFAI.units.AZIMUTHAL_UNITS` | |
182 :return: The original supplied value, if is one of the keys in `pyFAI.units.AZIMUTHAL_UNITS`. | |
183 :rtype: str | |
184 """ | |
185 if azimuthal_units in pyFAI.units.AZIMUTHAL_UNITS.keys(): | |
186 return(azimuthal_units) | |
187 else: | |
188 raise(ValueError(f'Invalid azimuthal units: {azimuthal_units}. Must be one of {", ".join(pyFAI.units.AZIMUTHAL_UNITS.keys())}')) | |
189 def validate_range_max(range_name:str): | |
190 """Validate the maximum value of an integration range. | |
191 | |
192 :param range_name: The name of the integration range (e.g. radial, azimuthal). | |
193 :type range_name: str | |
194 :return: The callable that performs the validation. | |
195 :rtype: callable | |
196 """ | |
197 def _validate_range_max(cls, range_max, values): | |
198 """Check if the maximum value of the integration range is greater than its minimum value. | |
199 | |
200 :param range_max: The maximum value of the integration range. | |
201 :type range_max: float | |
202 :param values: The values of the other fields being validated. | |
203 :type values: dict | |
204 :raises ValueError: If the maximum value of the integration range is not greater than its minimum value. | |
205 :return: The validated maximum range value | |
206 :rtype: float | |
207 """ | |
208 range_min = values.get(f'{range_name}_min') | |
209 if range_min < range_max: | |
210 return(range_max) | |
211 else: | |
212 raise(ValueError(f'Maximum value of integration range must be greater than minimum value of integration range ({range_name}_min={range_min}).')) | |
213 return(_validate_range_max) | |
214 _validate_radial_max = validator('radial_max', allow_reuse=True)(validate_range_max('radial')) | |
215 _validate_azimuthal_max = validator('azimuthal_max', allow_reuse=True)(validate_range_max('azimuthal')) | |
216 def validate_for_map_config(self, map_config:MapConfig): | |
217 """ | |
218 Validate the existence of the detector data file for all scan points in `map_config`. | |
219 | |
220 :param map_config: The `MapConfig` instance to validate against. | |
221 :type map_config: MapConfig | |
222 :raises RuntimeError: If a detector data file could not be found for a scan point occurring in `map_config`. | |
223 :return: None | |
224 :rtype: None | |
225 """ | |
226 for detector in self.detectors: | |
227 for scans in map_config.spec_scans: | |
228 for scan_number in scans.scan_numbers: | |
229 scanparser = scans.get_scanparser(scan_number) | |
230 for scan_step_index in range(scanparser.spec_scan_npts): | |
231 # Make sure the detector data file exists for all scan points | |
232 try: | |
233 detector_data_file = scanparser.get_detector_data_file(detector.prefix, scan_step_index) | |
234 except: | |
235 raise(RuntimeError(f'Could not find data file for detector prefix {detector.prefix} on scan number {scan_number} in spec file {scans.spec_file}')) | |
236 def get_azimuthal_adjustments(self): | |
237 """To enable a continuous range of integration in the azimuthal direction | |
238 for radial and cake integration, obtain adjusted values for this | |
239 `IntegrationConfig`'s `azimuthal_min` and `azimuthal_max` values, the | |
240 angle amount by which those values were adjusted, and the proper location | |
241 of the discontinuity in the azimuthal direction. | |
242 | |
243 :return: Adjusted chi_min, adjusted chi_max, chi_offset, chi_discontinuity | |
244 :rtype: tuple[float,float,float,float] | |
245 """ | |
246 return(get_azimuthal_adjustments(self.azimuthal_min, self.azimuthal_max)) | |
247 def get_azimuthal_integrators(self): | |
248 """Get a list of `AzimuthalIntegrator`s that correspond to the detector | |
249 configurations in this instance of `IntegrationConfig`. | |
250 | |
251 The returned `AzimuthalIntegrator`s are (if need be) artificially rotated | |
252 in the azimuthal direction to achieve a continuous range of integration | |
253 in the azimuthal direction. | |
254 | |
255 :returns: A list of `AzimuthalIntegrator`s appropriate for use by this | |
256 `IntegrationConfig` tool | |
257 :rtype: list[pyFAI.azimuthalIntegrator.AzimuthalIntegrator] | |
258 """ | |
259 chi_min, chi_max, chi_offset, chi_disc = self.get_azimuthal_adjustments() | |
260 return(get_azimuthal_integrators(tuple([detector.poni_file for detector in self.detectors]), chi_offset=chi_offset)) | |
261 def get_multi_geometry_integrator(self): | |
262 """Get a `MultiGeometry` integrator suitable for use by this instance of | |
263 `IntegrationConfig`. | |
264 | |
265 :return: A `MultiGeometry` integrator | |
266 :rtype: pyFAI.multi_geometry.MultiGeometry | |
267 """ | |
268 poni_files = tuple([detector.poni_file for detector in self.detectors]) | |
269 radial_range = (self.radial_min, self.radial_max) | |
270 azimuthal_range = (self.azimuthal_min, self.azimuthal_max) | |
271 return(get_multi_geometry_integrator(poni_files, self.radial_units, radial_range, azimuthal_range)) | |
272 def get_azimuthally_integrated_data(self, spec_scans:SpecScans, scan_number:int, scan_step_index:int): | |
273 """Return azimuthally-integrated data for the scan step specified. | |
274 | |
275 :param spec_scans: An instance of `SpecScans` containing the scan step requested. | |
276 :type spec_scans: SpecScans | |
277 :param scan_number: The number of the scan containing the scan step requested. | |
278 :type scan_number: int | |
279 :param scan_step_index: The index of the scan step requested. | |
280 :type scan_step_index: int | |
281 :return: A 1D array of azimuthally-integrated raw detector intensities. | |
282 :rtype: np.ndarray | |
283 """ | |
284 detector_data = spec_scans.get_detector_data(self.detectors, scan_number, scan_step_index) | |
285 integrator = self.get_multi_geometry_integrator() | |
286 lst_mask = [detector.mask_array for detector in self.detectors] | |
287 result = integrator.integrate1d(detector_data, lst_mask=lst_mask, npt=self.radial_npt, error_model=self.error_model) | |
288 if result.sigma is None: | |
289 return(result.intensity) | |
290 else: | |
291 return(result.intensity, result.sigma) | |
292 def get_radially_integrated_data(self, spec_scans:SpecScans, scan_number:int, scan_step_index:int): | |
293 """Return radially-integrated data for the scan step specified. | |
294 | |
295 :param spec_scans: An instance of `SpecScans` containing the scan step requested. | |
296 :type spec_scans: SpecScans | |
297 :param scan_number: The number of the scan containing the scan step requested. | |
298 :type scan_number: int | |
299 :param scan_step_index: The index of the scan step requested. | |
300 :type scan_step_index: int | |
301 :return: A 1D array of radially-integrated raw detector intensities. | |
302 :rtype: np.ndarray | |
303 """ | |
304 # Handle idiosyncracies of azimuthal ranges in pyFAI | |
305 # Adjust chi ranges to get a continuous range of iintegrated data | |
306 chi_min, chi_max, chi_offset, chi_disc = self.get_azimuthal_adjustments() | |
307 # Perform radial integration on a detector-by-detector basis. | |
308 I_each_detector = [] | |
309 variance_each_detector = [] | |
310 integrators = self.get_azimuthal_integrators() | |
311 for i,(integrator,detector) in enumerate(zip(integrators,self.detectors)): | |
312 detector_data = spec_scans.get_detector_data([detector], scan_number, scan_step_index)[0] | |
313 result = integrator.integrate_radial(detector_data, self.azimuthal_npt, | |
314 unit=self.azimuthal_units, azimuth_range=(chi_min,chi_max), | |
315 radial_unit=self.radial_units, radial_range=(self.radial_min,self.radial_max), | |
316 mask=detector.mask_array) #, error_model=self.error_model) | |
317 I_each_detector.append(result.intensity) | |
318 if result.sigma is not None: | |
319 variance_each_detector.append(result.sigma**2) | |
320 # Add the individual detectors' integrated intensities together | |
321 I = np.nansum(I_each_detector, axis=0) | |
322 # Ignore data at values of chi for which there was no data | |
323 I = np.where(I==0, np.nan, I) | |
324 if len(I_each_detector) != len(variance_each_detector): | |
325 return(I) | |
326 else: | |
327 # Get the standard deviation of the summed detectors' intensities | |
328 sigma = np.sqrt(np.nansum(variance_each_detector, axis=0)) | |
329 return(I, sigma) | |
330 def get_cake_integrated_data(self, spec_scans:SpecScans, scan_number:int, scan_step_index:int): | |
331 """Return cake-integrated data for the scan step specified. | |
332 | |
333 :param spec_scans: An instance of `SpecScans` containing the scan step requested. | |
334 :type spec_scans: SpecScans | |
335 :param scan_number: The number of the scan containing the scan step requested. | |
336 :type scan_number: int | |
337 :param scan_step_index: The index of the scan step requested. | |
338 :type scan_step_index: int | |
339 :return: A 2D array of cake-integrated raw detector intensities. | |
340 :rtype: np.ndarray | |
341 """ | |
342 detector_data = spec_scans.get_detector_data(self.detectors, scan_number, scan_step_index) | |
343 integrator = self.get_multi_geometry_integrator() | |
344 lst_mask = [detector.mask_array for detector in self.detectors] | |
345 result = integrator.integrate2d(detector_data, lst_mask=lst_mask, | |
346 npt_rad=self.radial_npt, npt_azim=self.azimuthal_npt, | |
347 method='bbox', | |
348 error_model=self.error_model) | |
349 if result.sigma is None: | |
350 return(result.intensity) | |
351 else: | |
352 return(result.intensity, result.sigma) | |
353 def get_integrated_data(self, spec_scans:SpecScans, scan_number:int, scan_step_index:int): | |
354 """Return integrated data for the scan step specified. | |
355 | |
356 :param spec_scans: An instance of `SpecScans` containing the scan step requested. | |
357 :type spec_scans: SpecScans | |
358 :param scan_number: The number of the scan containing the scan step requested. | |
359 :type scan_number: int | |
360 :param scan_step_index: The index of the scan step requested. | |
361 :type scan_step_index: int | |
362 :return: An array of integrated raw detector intensities. | |
363 :rtype: np.ndarray | |
364 """ | |
365 if self.integration_type == 'azimuthal': | |
366 return(self.get_azimuthally_integrated_data(spec_scans, scan_number, scan_step_index)) | |
367 elif self.integration_type == 'radial': | |
368 return(self.get_radially_integrated_data(spec_scans, scan_number, scan_step_index)) | |
369 elif self.integration_type == 'cake': | |
370 return(self.get_cake_integrated_data(spec_scans, scan_number, scan_step_index)) | |
371 | |
372 @property | |
373 def integrated_data_coordinates(self): | |
374 """ | |
375 Return a dictionary of coordinate arrays for navigating the dimension(s) | |
376 of the integrated data produced by this instance of `IntegrationConfig`. | |
377 | |
378 :return: A dictionary with either one or two keys: 'azimuthal' and/or | |
379 'radial', each of which points to a 1-D `numpy` array of coordinate | |
380 values. | |
381 :rtype: dict[str,np.ndarray] | |
382 """ | |
383 if self.integration_type == 'azimuthal': | |
384 return(get_integrated_data_coordinates(radial_range=(self.radial_min,self.radial_max), | |
385 radial_npt=self.radial_npt)) | |
386 elif self.integration_type == 'radial': | |
387 return(get_integrated_data_coordinates(azimuthal_range=(self.azimuthal_min,self.azimuthal_max), | |
388 azimuthal_npt=self.azimuthal_npt)) | |
389 elif self.integration_type == 'cake': | |
390 return(get_integrated_data_coordinates(radial_range=(self.radial_min,self.radial_max), | |
391 radial_npt=self.radial_npt, | |
392 azimuthal_range=(self.azimuthal_min,self.azimuthal_max), | |
393 azimuthal_npt=self.azimuthal_npt)) | |
394 @property | |
395 def integrated_data_dims(self): | |
396 """Return a tuple of the coordinate labels for the integrated data | |
397 produced by this instance of `IntegrationConfig`. | |
398 """ | |
399 directions = list(self.integrated_data_coordinates.keys()) | |
400 dim_names = [getattr(self, f'{direction}_units') for direction in directions] | |
401 return(dim_names) | |
402 @property | |
403 def integrated_data_shape(self): | |
404 """Return a tuple representing the shape of the integrated data | |
405 produced by this instance of `IntegrationConfig` for a single scan step. | |
406 """ | |
407 return(tuple([len(coordinate_values) for coordinate_name,coordinate_values in self.integrated_data_coordinates.items()])) | |
408 | |
409 @cache | |
410 def get_azimuthal_adjustments(chi_min:float, chi_max:float): | |
411 """ | |
412 Fix chi discontinuity at 180 degrees and return the adjusted chi range, | |
413 offset, and discontinuty. | |
414 | |
415 If the discontinuity is crossed, obtain the offset to artificially rotate | |
416 detectors to achieve a continuous azimuthal integration range. | |
417 | |
418 :param chi_min: The minimum value of the azimuthal range. | |
419 :type chi_min: float | |
420 :param chi_max: The maximum value of the azimuthal range. | |
421 :type chi_max: float | |
422 :return: The following four values: the adjusted minimum value of the | |
423 azimuthal range, the adjusted maximum value of the azimuthal range, the | |
424 value by which the chi angle was adjusted, the position of the chi | |
425 discontinuity. | |
426 """ | |
427 # Fix chi discontinuity at 180 degrees for now. | |
428 chi_disc = 180 | |
429 # If the discontinuity is crossed, artificially rotate the detectors to | |
430 # achieve a continuous azimuthal integration range | |
431 if chi_min < chi_disc and chi_max > chi_disc: | |
432 chi_offset = chi_max - chi_disc | |
433 else: | |
434 chi_offset = 0 | |
435 return(chi_min-chi_offset, chi_max-chi_offset, chi_offset, chi_disc) | |
436 @cache | |
437 def get_azimuthal_integrators(poni_files:tuple, chi_offset=0): | |
438 """ | |
439 Return a list of `AzimuthalIntegrator` objects generated from PONI files. | |
440 | |
441 :param poni_files: Tuple of strings, each string being a path to a PONI file. : tuple | |
442 :type poni_files: tuple | |
443 :param chi_offset: The angle in degrees by which the `AzimuthalIntegrator` objects will be rotated, defaults to 0. | |
444 :type chi_offset: float, optional | |
445 :return: List of `AzimuthalIntegrator` objects | |
446 :rtype: list[pyFAI.azimuthalIntegrator.AzimuthalIntegrator] | |
447 """ | |
448 ais = [] | |
449 for poni_file in poni_files: | |
450 ai = copy.deepcopy(azimuthal_integrator(poni_file)) | |
451 ai.rot3 += chi_offset * np.pi/180 | |
452 ais.append(ai) | |
453 return(ais) | |
454 @cache | |
455 def get_multi_geometry_integrator(poni_files:tuple, radial_unit:str, radial_range:tuple, azimuthal_range:tuple): | |
456 """Return a `MultiGeometry` instance that can be used for azimuthal or cake | |
457 integration. | |
458 | |
459 :param poni_files: Tuple of PONI files that describe the detectors to be | |
460 integrated. | |
461 :type poni_files: tuple | |
462 :param radial_unit: Unit to use for radial integration range. | |
463 :type radial_unit: str | |
464 :param radial_range: Tuple describing the range for radial integration. | |
465 :type radial_range: tuple[float,float] | |
466 :param azimuthal_range:Tuple describing the range for azimuthal integration. | |
467 :type azimuthal_range: tuple[float,float] | |
468 :return: `MultiGeometry` instance that can be used for azimuthal or cake | |
469 integration. | |
470 :rtype: pyFAI.multi_geometry.MultiGeometry | |
471 """ | |
472 chi_min, chi_max, chi_offset, chi_disc = get_azimuthal_adjustments(*azimuthal_range) | |
473 ais = copy.deepcopy(get_azimuthal_integrators(poni_files, chi_offset=chi_offset)) | |
474 multi_geometry = pyFAI.multi_geometry.MultiGeometry(ais, | |
475 unit=radial_unit, | |
476 radial_range=radial_range, | |
477 azimuth_range=(chi_min,chi_max), | |
478 wavelength=sum([ai.wavelength for ai in ais])/len(ais), | |
479 chi_disc=chi_disc) | |
480 return(multi_geometry) | |
481 @cache | |
482 def get_integrated_data_coordinates(azimuthal_range:tuple=None, azimuthal_npt:int=None, radial_range:tuple=None, radial_npt:int=None): | |
483 """ | |
484 Return a dictionary of coordinate arrays for the specified radial and/or | |
485 azimuthal integration ranges. | |
486 | |
487 :param azimuthal_range: Tuple specifying the range of azimuthal angles over | |
488 which to generate coordinates, in the format (min, max), defaults to | |
489 None. | |
490 :type azimuthal_range: tuple[float,float], optional | |
491 :param azimuthal_npt: Number of azimuthal coordinate points to generate, | |
492 defaults to None. | |
493 :type azimuthal_npt: int, optional | |
494 :param radial_range: Tuple specifying the range of radial distances over | |
495 which to generate coordinates, in the format (min, max), defaults to | |
496 None. | |
497 :type radial_range: tuple[float,float], optional | |
498 :param radial_npt: Number of radial coordinate points to generate, defaults | |
499 to None. | |
500 :type radial_npt: int, optional | |
501 :return: A dictionary with either one or two keys: 'azimuthal' and/or | |
502 'radial', each of which points to a 1-D `numpy` array of coordinate | |
503 values. | |
504 :rtype: dict[str,np.ndarray] | |
505 """ | |
506 integrated_data_coordinates = {} | |
507 if azimuthal_range is not None and azimuthal_npt is not None: | |
508 integrated_data_coordinates['azimuthal'] = np.linspace(*azimuthal_range, azimuthal_npt) | |
509 if radial_range is not None and radial_npt is not None: | |
510 integrated_data_coordinates['radial'] = np.linspace(*radial_range, radial_npt) | |
511 return(integrated_data_coordinates) |