Mercurial > repos > jjohnson > defuse8
comparison defuse_trinity_analysis.py @ 0:63f23d5db27c draft
planemo upload for repository https://github.com/jj-umn/galaxytools/tree/master/defuse commit 2c2fd38cb761ec57bac7a0bd376e6aa2b88265d0-dirty
| author | jjohnson |
|---|---|
| date | Mon, 20 May 2019 15:25:03 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:63f23d5db27c |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 """ | |
| 3 # | |
| 4 #------------------------------------------------------------------------------ | |
| 5 # University of Minnesota | |
| 6 # Copyright 2014, Regents of the University of Minnesota | |
| 7 #------------------------------------------------------------------------------ | |
| 8 # Author: | |
| 9 # | |
| 10 # James E Johnson | |
| 11 # | |
| 12 #------------------------------------------------------------------------------ | |
| 13 """ | |
| 14 | |
| 15 | |
| 16 """ | |
| 17 This tool takes the defuse results.tsv tab-delimited file, trinity | |
| 18 and creates a tabular report | |
| 19 | |
| 20 Would it be possible to create 2 additional files from the deFuse-Trinity comparison program. | |
| 21 One containing all the Trinity records matched to deFuse records (with the deFuse ID number), | |
| 22 and the other with the ORFs records matching back to the Trinity records in the first files? | |
| 23 | |
| 24 M045_Report.csv | |
| 25 "","deFuse_subset.count","deFuse.gene_name1","deFuse.gene_name2","deFuse.span_count","deFuse.probability","deFuse.gene_chromosome1","deFuse.gene_location1","deFuse.gene_chromosome2","deFuse.gene_location2","deFuse_subset.type" | |
| 26 "1",1,"Rps6","Dennd4c",7,0.814853504,"4","coding","4","coding","TIC " | |
| 27 | |
| 28 | |
| 29 | |
| 30 OS03_Matched_Rev.csv | |
| 31 "count","gene1","gene2","breakpoint","fusion","Trinity_transcript_ID","Trinity_transcript","ID1","protein" | |
| 32 | |
| 33 "","deFuse.splitr_sequence","deFuse.gene_chromosome1","deFuse.gene_chromosome2","deFuse.gene_location1","deFuse.gene_location2","deFuse.gene_name1","deFuse.gene_name2","deFuse.span_count","deFuse.probability","word1","word2","fusion_part_1","fusion_part_2","fusion_point","fusion_point_rc","count","transcript" | |
| 34 | |
| 35 """ | |
| 36 | |
| 37 import sys,re,os.path,math | |
| 38 import textwrap | |
| 39 import optparse | |
| 40 from optparse import OptionParser | |
| 41 | |
| 42 revcompl = lambda x: ''.join([{'A':'T','C':'G','G':'C','T':'A','a':'t','c':'g','g':'c','t':'a','N':'N','n':'n'}[B] for B in x][::-1]) | |
| 43 | |
| 44 codon_map = {"UUU":"F", "UUC":"F", "UUA":"L", "UUG":"L", | |
| 45 "UCU":"S", "UCC":"S", "UCA":"S", "UCG":"S", | |
| 46 "UAU":"Y", "UAC":"Y", "UAA":"*", "UAG":"*", | |
| 47 "UGU":"C", "UGC":"C", "UGA":"*", "UGG":"W", | |
| 48 "CUU":"L", "CUC":"L", "CUA":"L", "CUG":"L", | |
| 49 "CCU":"P", "CCC":"P", "CCA":"P", "CCG":"P", | |
| 50 "CAU":"H", "CAC":"H", "CAA":"Q", "CAG":"Q", | |
| 51 "CGU":"R", "CGC":"R", "CGA":"R", "CGG":"R", | |
| 52 "AUU":"I", "AUC":"I", "AUA":"I", "AUG":"M", | |
| 53 "ACU":"T", "ACC":"T", "ACA":"T", "ACG":"T", | |
| 54 "AAU":"N", "AAC":"N", "AAA":"K", "AAG":"K", | |
| 55 "AGU":"S", "AGC":"S", "AGA":"R", "AGG":"R", | |
| 56 "GUU":"V", "GUC":"V", "GUA":"V", "GUG":"V", | |
| 57 "GCU":"A", "GCC":"A", "GCA":"A", "GCG":"A", | |
| 58 "GAU":"D", "GAC":"D", "GAA":"E", "GAG":"E", | |
| 59 "GGU":"G", "GGC":"G", "GGA":"G", "GGG":"G",} | |
| 60 | |
| 61 def translate(seq) : | |
| 62 rna = seq.upper().replace('T','U') | |
| 63 aa = [] | |
| 64 for i in range(0,len(rna) - 2, 3): | |
| 65 codon = rna[i:i+3] | |
| 66 aa.append(codon_map[codon] if codon in codon_map else 'X') | |
| 67 return ''.join(aa) | |
| 68 | |
| 69 def get_stop_codons(seq) : | |
| 70 rna = seq.upper().replace('T','U') | |
| 71 stop_codons = [] | |
| 72 for i in range(0,len(rna) - 2, 3): | |
| 73 codon = rna[i:i+3] | |
| 74 aa = codon_map[codon] if codon in codon_map else 'X' | |
| 75 if aa == '*': | |
| 76 stop_codons.append(codon) | |
| 77 return stop_codons | |
| 78 | |
| 79 def read_fasta(fp): | |
| 80 name, seq = None, [] | |
| 81 for line in fp: | |
| 82 line = line.rstrip() | |
| 83 if line.startswith(">"): | |
| 84 if name: yield (name, ''.join(seq)) | |
| 85 name, seq = line, [] | |
| 86 else: | |
| 87 seq.append(line) | |
| 88 if name: yield (name, ''.join(seq)) | |
| 89 | |
| 90 | |
| 91 def test_rcomplement(seq, target): | |
| 92 try: | |
| 93 comp = revcompl(seq) | |
| 94 return comp in target | |
| 95 except: | |
| 96 pass | |
| 97 return False | |
| 98 | |
| 99 def test_reverse(seq,target): | |
| 100 return options.test_reverse and seq and seq[::-1] in target | |
| 101 | |
| 102 def cmp_alphanumeric(s1,s2): | |
| 103 if s1 == s2: | |
| 104 return 0 | |
| 105 a1 = re.findall("\d+|[a-zA-Z]+",s1) | |
| 106 a2 = re.findall("\d+|[a-zA-Z]+",s2) | |
| 107 for i in range(min(len(a1),len(a2))): | |
| 108 if a1[i] == a2[i]: | |
| 109 continue | |
| 110 if a1[i].isdigit() and a2[i].isdigit(): | |
| 111 return int(a1[i]) - int(a2[i]) | |
| 112 return 1 if a1[i] > a2[i] else -1 | |
| 113 return len(a1) - len(a2) | |
| 114 | |
| 115 def parse_defuse_results(inputFile): | |
| 116 defuse_results = [] | |
| 117 columns = [] | |
| 118 coltype_int = ['expression1', 'expression2', 'gene_start1', 'gene_start2', 'gene_end1', 'gene_end2', 'genomic_break_pos1', 'genomic_break_pos2', 'breakpoint_homology', 'span_count', 'splitr_count', 'splice_score'] | |
| 119 coltype_float = ['probability'] | |
| 120 coltype_yn = [ 'orf', 'exonboundaries', 'read_through', 'interchromosomal', 'adjacent', 'altsplice', 'deletion', 'eversion', 'inversion'] | |
| 121 try: | |
| 122 for linenum,line in enumerate(inputFile): | |
| 123 ## print >> sys.stderr, "%d: %s\n" % (linenum,line) | |
| 124 fields = line.strip().split('\t') | |
| 125 if line.startswith('cluster_id'): | |
| 126 columns = fields | |
| 127 ## print >> sys.stderr, "columns: %s\n" % columns | |
| 128 continue | |
| 129 elif fields and len(fields) == len(columns): | |
| 130 cluster_id = fields[columns.index('cluster_id')] | |
| 131 cluster = dict() | |
| 132 flags = [] | |
| 133 defuse_results.append(cluster) | |
| 134 for i,v in enumerate(columns): | |
| 135 if v in coltype_int: | |
| 136 cluster[v] = int(fields[i]) | |
| 137 elif v in coltype_float: | |
| 138 cluster[v] = float(fields[i]) | |
| 139 elif v in coltype_yn: | |
| 140 cluster[v] = fields[i] == 'Y' | |
| 141 if cluster[v]: | |
| 142 flags.append(columns[i]) | |
| 143 else: | |
| 144 cluster[v] = fields[i] | |
| 145 cluster['flags'] = ','.join(flags) | |
| 146 except Exception, e: | |
| 147 print >> sys.stderr, "failed to read cluster_dict: %s" % e | |
| 148 exit(1) | |
| 149 return defuse_results | |
| 150 | |
| 151 ## deFuse params to the mapping application? | |
| 152 | |
| 153 def __main__(): | |
| 154 #Parse Command Line | |
| 155 parser = optparse.OptionParser() | |
| 156 # files | |
| 157 parser.add_option( '-i', '--input', dest='input', default=None, help='The input defuse results.tsv file (else read from stdin)' ) | |
| 158 parser.add_option( '-t', '--transcripts', dest='transcripts', default=None, help='Trinity transcripts' ) | |
| 159 parser.add_option( '-p', '--peptides', dest='peptides', default=None, help='Trinity ORFs' ) | |
| 160 parser.add_option( '-o', '--output', dest='output', default=None, help='The output report (else write to stdout)' ) | |
| 161 parser.add_option( '-m', '--matched', dest='matched', default=None, help='The output matched report' ) | |
| 162 parser.add_option( '-a', '--transcript_alignment', dest='transcript_alignment', default=None, help='The output alignment file' ) | |
| 163 parser.add_option( '-A', '--orf_alignment', dest='orf_alignment', default=None, help='The output ORF alignment file' ) | |
| 164 parser.add_option( '-N', '--nbases', dest='nbases', type='int', default=12, help='Number of bases on either side of the fusion to compare' ) | |
| 165 parser.add_option( '-L', '--min_pep_len', dest='min_pep_len', type='int', default=100, help='Minimum length of peptide to report' ) | |
| 166 parser.add_option( '-T', '--ticdist', dest='ticdist', type='int', default=1000000, help='Maximum intrachromosomal distance to be classified a Transcription-induced chimera (TIC)' ) | |
| 167 parser.add_option( '-P', '--prior_aa', dest='prior_aa', type='int', default=11, help='Number of protein AAs to show preceeding fusion point' ) | |
| 168 parser.add_option( '-I', '--incomplete_orfs', dest='incomplete_orfs', action='store_true', default=False, help='Count incomplete ORFs' ) | |
| 169 parser.add_option( '-O', '--orf_type', dest='orf_type', action='append', default=['complete','5prime_partial'], choices=['complete','5prime_partial','3prime_partial','internal'], help='ORF types to report' ) | |
| 170 parser.add_option( '-r', '--readthrough', dest='readthrough', type='int', default=3, help='Number of stop_codons to read through' ) | |
| 171 # min_orf_len | |
| 172 # split_na_len | |
| 173 # tic_len = 1000000 | |
| 174 # prior | |
| 175 # deFuse direction reversed | |
| 176 # in frame ? | |
| 177 # contain known protein elements | |
| 178 # what protein change | |
| 179 # trinity provides full transctipt, defuse doesn't show full | |
| 180 #parser.add_option( '-r', '--reference', dest='reference', default=None, help='The genomic reference fasta' ) | |
| 181 #parser.add_option( '-g', '--gtf', dest='gtf', default=None, help='The genomic reference gtf feature file') | |
| 182 (options, args) = parser.parse_args() | |
| 183 | |
| 184 # results.tsv input | |
| 185 if options.input != None: | |
| 186 try: | |
| 187 inputPath = os.path.abspath(options.input) | |
| 188 inputFile = open(inputPath, 'r') | |
| 189 except Exception, e: | |
| 190 print >> sys.stderr, "failed: %s" % e | |
| 191 exit(2) | |
| 192 else: | |
| 193 inputFile = sys.stdin | |
| 194 # vcf output | |
| 195 if options.output != None: | |
| 196 try: | |
| 197 outputPath = os.path.abspath(options.output) | |
| 198 outputFile = open(outputPath, 'w') | |
| 199 except Exception, e: | |
| 200 print >> sys.stderr, "failed: %s" % e | |
| 201 exit(3) | |
| 202 else: | |
| 203 outputFile = sys.stdout | |
| 204 outputTxFile = None | |
| 205 outputOrfFile = None | |
| 206 if options.transcript_alignment: | |
| 207 try: | |
| 208 outputTxFile = open(options.transcript_alignment,'w') | |
| 209 except Exception, e: | |
| 210 print >> sys.stderr, "failed: %s" % e | |
| 211 exit(3) | |
| 212 if options.orf_alignment: | |
| 213 try: | |
| 214 outputOrfFile = open(options.orf_alignment,'w') | |
| 215 except Exception, e: | |
| 216 print >> sys.stderr, "failed: %s" % e | |
| 217 exit(3) | |
| 218 # Add percent match after transcript | |
| 219 report_fields = ['gene_name1','gene_name2','span_count','probability','gene_chromosome1','gene_location1','gene_chromosome2','gene_location2','fusion_type','Transcript','coverage','Protein','flags','alignments1','alignments2'] | |
| 220 report_fields = ['cluster_id','gene_name1','gene_name2','span_count','probability','genomic_bkpt1','gene_location1','genomic_bkpt2','gene_location2','fusion_type','Transcript','coverage','Protein','flags','alignments1','alignments2'] | |
| 221 report_colnames = {'gene_name1':'Gene 1','gene_name2':'Gene 2','span_count':'Span cnt','probability':'Probability','gene_chromosome1':'From Chr','gene_location1':'Fusion point','gene_chromosome2':'To Chr','gene_location2':'Fusion point', 'cluster_id':'cluster_id', 'splitr_sequence':'splitr_sequence', 'splitr_count':'splitr_count', 'splitr_span_pvalue':'splitr_span_pvalue', 'splitr_pos_pvalue':'splitr_pos_pvalue', 'splitr_min_pvalue':'splitr_min_pvalue', 'adjacent':'adjacent', 'altsplice':'altsplice', 'break_adj_entropy1':'break_adj_entropy1', 'break_adj_entropy2':'break_adj_entropy2', 'break_adj_entropy_min':'break_adj_entropy_min', 'breakpoint_homology':'breakpoint_homology', 'breakseqs_estislands_percident':'breakseqs_estislands_percident', 'cdna_breakseqs_percident':'cdna_breakseqs_percident', 'deletion':'deletion', 'est_breakseqs_percident':'est_breakseqs_percident', 'eversion':'eversion', 'exonboundaries':'exonboundaries', 'expression1':'expression1', 'expression2':'expression2', 'gene1':'gene1', 'gene2':'gene2', 'gene_align_strand1':'gene_align_strand1', 'gene_align_strand2':'gene_align_strand2', 'gene_end1':'gene_end1', 'gene_end2':'gene_end2', 'gene_start1':'gene_start1', 'gene_start2':'gene_start2', 'gene_strand1':'gene_strand1', 'gene_strand2':'gene_strand2', 'genome_breakseqs_percident':'genome_breakseqs_percident', 'genomic_break_pos1':'genomic_break_pos1', 'genomic_break_pos2':'genomic_break_pos2', 'genomic_strand1':'genomic_strand1', 'genomic_strand2':'genomic_strand2', 'interchromosomal':'interchromosomal', 'interrupted_index1':'interrupted_index1', 'interrupted_index2':'interrupted_index2', 'inversion':'inversion', 'library_name':'library_name', 'max_map_count':'max_map_count', 'max_repeat_proportion':'max_repeat_proportion', 'mean_map_count':'mean_map_count', 'min_map_count':'min_map_count', 'num_multi_map':'num_multi_map', 'num_splice_variants':'num_splice_variants', 'orf':'orf', 'read_through':'read_through', 'repeat_proportion1':'repeat_proportion1', 'repeat_proportion2':'repeat_proportion2', 'span_coverage1':'span_coverage1', 'span_coverage2':'span_coverage2', 'span_coverage_max':'span_coverage_max', 'span_coverage_min':'span_coverage_min', 'splice_score':'splice_score', 'splicing_index1':'splicing_index1', 'splicing_index2':'splicing_index2', 'fusion_type':'Type', 'coverage':'fusion%','Transcript':'Transcript?','Protein':'Protein?','flags':'descriptions','fwd_seq':'fusion','alignments1':'alignments1','alignments2':'alignments2','genomic_bkpt1':'From Chr', 'genomic_bkpt2':'To Chr'} | |
| 222 | |
| 223 ## Read defuse results | |
| 224 fusions = parse_defuse_results(inputFile) | |
| 225 ## Create a field with the 12 nt before and after the fusion point. | |
| 226 ## Create a field with the reverse complement of the 24 nt fusion point field. | |
| 227 ## Add fusion type filed (INTER, INTRA, TIC) | |
| 228 for i,fusion in enumerate(fusions): | |
| 229 fusion['ordinal'] = i + 1 | |
| 230 fusion['genomic_bkpt1'] = "%s:%d" % (fusion['gene_chromosome1'], fusion['genomic_break_pos1']) | |
| 231 fusion['genomic_bkpt2'] = "%s:%d" % (fusion['gene_chromosome2'], fusion['genomic_break_pos2']) | |
| 232 fusion['alignments1'] = "%s%s%s" % (fusion['genomic_strand1'], fusion['gene_strand1'], fusion['gene_align_strand1']) | |
| 233 fusion['alignments2'] = "%s%s%s" % (fusion['genomic_strand2'], fusion['gene_strand2'], fusion['gene_align_strand2']) | |
| 234 split_seqs = fusion['splitr_sequence'].split('|') | |
| 235 fusion['split_seqs'] = split_seqs | |
| 236 fusion['split_seqs'] = split_seqs | |
| 237 fusion['split_seq_lens'] = [len(split_seqs[0]),len(split_seqs[1])] | |
| 238 fusion['split_max_lens'] = [len(split_seqs[0]),len(split_seqs[1])] | |
| 239 fwd_off = min(abs(options.nbases),len(split_seqs[0])) | |
| 240 rev_off = min(abs(options.nbases),len(split_seqs[1])) | |
| 241 fusion['fwd_off'] = fwd_off | |
| 242 fusion['rev_off'] = rev_off | |
| 243 fwd_seq = split_seqs[0][-fwd_off:] + split_seqs[1][:rev_off] | |
| 244 rev_seq = revcompl(fwd_seq) | |
| 245 fusion['fwd_seq'] = fwd_seq | |
| 246 fusion['rev_seq'] = rev_seq | |
| 247 fusion_type = 'inter' if fusion['gene_chromosome1'] != fusion['gene_chromosome2'] else 'intra' if abs(fusion['genomic_break_pos1'] - fusion['genomic_break_pos2']) > options.ticdist else 'TIC' | |
| 248 fusion['fusion_type'] = fusion_type | |
| 249 fusion['transcripts'] = dict() | |
| 250 fusion['Transcript'] = 'No' | |
| 251 fusion['coverage'] = 0 | |
| 252 fusion['Protein'] = 'No' | |
| 253 # print >> sys.stdout, "%4d\t%6s\t%s\t%s\t%s\t%s\t%s" % (i,fusion['cluster_id'],fwd_seq,rev_seq,fusion_type,fusion['gene_name1'],fusion['gene_name2']) | |
| 254 inputFile.close() | |
| 255 | |
| 256 ## Process Trinity data and compare to deFuse | |
| 257 matched_transcripts = dict() | |
| 258 matched_orfs = dict() | |
| 259 transcript_orfs = dict() | |
| 260 fusions_with_transcripts = set() | |
| 261 fusions_with_orfs = set() | |
| 262 ## fusion['transcripts'][tx_id] { revcompl:?, bkpt:n, seq1: , seq2: , match1:n, match2:n} | |
| 263 n = 0 | |
| 264 if options.transcripts: | |
| 265 with open(options.transcripts) as fp: | |
| 266 for tx_full_id, seq in read_fasta(fp): | |
| 267 n += 1 | |
| 268 for i,fusion in enumerate(fusions): | |
| 269 if fusion['fwd_seq'] in seq or fusion['rev_seq'] in seq: | |
| 270 fusions_with_transcripts.add(i) | |
| 271 fusion['Transcript'] = 'Yes' | |
| 272 tx_id = tx_full_id.lstrip('>').split()[0] | |
| 273 matched_transcripts[tx_full_id] = seq | |
| 274 fusion['transcripts'][tx_id] = dict() | |
| 275 fusion['transcripts'][tx_id]['seq'] = seq | |
| 276 fusion['transcripts'][tx_id]['full_id'] = tx_full_id | |
| 277 pos = seq.find(fusion['fwd_seq']) | |
| 278 if pos >= 0: | |
| 279 tx_bkpt = pos + fusion['fwd_off'] | |
| 280 # fusion['transcripts'][tx_full_id] = tx_bkpt | |
| 281 if tx_bkpt > fusion['split_max_lens'][0]: | |
| 282 fusion['split_max_lens'][0] = tx_bkpt | |
| 283 len2 = len(seq) - tx_bkpt | |
| 284 if len2 > fusion['split_max_lens'][1]: | |
| 285 fusion['split_max_lens'][1] = len2 | |
| 286 fusion['transcripts'][tx_id]['bkpt'] = tx_bkpt | |
| 287 fusion['transcripts'][tx_id]['revcompl'] = False | |
| 288 fusion['transcripts'][tx_id]['seq1'] = seq[:tx_bkpt] | |
| 289 fusion['transcripts'][tx_id]['seq2'] = seq[tx_bkpt:] | |
| 290 else: | |
| 291 pos = seq.find(fusion['rev_seq']) | |
| 292 tx_bkpt = pos + fusion['rev_off'] | |
| 293 # fusion['transcripts'][tx_full_id] = -tx_bkpt | |
| 294 if tx_bkpt > fusion['split_max_lens'][1]: | |
| 295 fusion['split_max_lens'][1] = tx_bkpt | |
| 296 len2 = len(seq) - tx_bkpt | |
| 297 if len2 > fusion['split_max_lens'][0]: | |
| 298 fusion['split_max_lens'][0] = len2 | |
| 299 rseq = revcompl(seq) | |
| 300 pos = rseq.find(fusion['fwd_seq']) | |
| 301 tx_bkpt = pos + fusion['fwd_off'] | |
| 302 fusion['transcripts'][tx_id]['bkpt'] = tx_bkpt | |
| 303 fusion['transcripts'][tx_id]['revcompl'] = True | |
| 304 fusion['transcripts'][tx_id]['seq1'] = rseq[:tx_bkpt] | |
| 305 fusion['transcripts'][tx_id]['seq2'] = rseq[tx_bkpt:] | |
| 306 fseq = fusion['split_seqs'][0] | |
| 307 tseq = fusion['transcripts'][tx_id]['seq1'] | |
| 308 mlen = min(len(fseq),len(tseq)) | |
| 309 fusion['transcripts'][tx_id]['match1'] = mlen | |
| 310 for j in range(1,mlen+1): | |
| 311 if fseq[-j] != tseq[-j]: | |
| 312 fusion['transcripts'][tx_id]['match1'] = j - 1 | |
| 313 break | |
| 314 fseq = fusion['split_seqs'][1] | |
| 315 tseq = fusion['transcripts'][tx_id]['seq2'] | |
| 316 mlen = min(len(fseq),len(tseq)) | |
| 317 fusion['transcripts'][tx_id]['match2'] = mlen | |
| 318 for j in range(mlen): | |
| 319 if fseq[j] != tseq[j]: | |
| 320 fusion['transcripts'][tx_id]['match2'] = j | |
| 321 break | |
| 322 # coverage = math.floor(float(fusion['transcripts'][tx_id]['match1'] + fusion['transcripts'][tx_id]['match2']) * 100. / len(fusion['split_seqs'][0]+fusion['split_seqs'][1])) | |
| 323 coverage = int((fusion['transcripts'][tx_id]['match1'] + fusion['transcripts'][tx_id]['match2']) * 1000. / len(fusion['split_seqs'][0]+fusion['split_seqs'][1])) * .1 | |
| 324 # print >> sys.stderr, "%s\t%d\t%d\t%d\%s\t\t%d\t%d\t%d\t%d" % (tx_id,fusion['transcripts'][tx_id]['match1'],fusion['transcripts'][tx_id]['match2'],len(fusion['split_seqs'][0]+fusion['split_seqs'][1]),coverage,len( fusion['split_seqs'][0]),len(fusion['transcripts'][tx_id]['seq1']),len(fusion['split_seqs'][1]),len(fusion['transcripts'][tx_id]['seq2'])) | |
| 325 fusion['coverage'] = max(coverage,fusion['coverage']) | |
| 326 print >> sys.stdout, "fusions_with_transcripts: %d %s\n matched_transcripts: %d" % (len(fusions_with_transcripts),fusions_with_transcripts,len(matched_transcripts)) | |
| 327 ##for i,fusion in enumerate(fusions): | |
| 328 ## print >> sys.stdout, "%4d\t%6s\t%s\t%s\t%s\t%s\t%s\t%s" % (i,fusion['cluster_id'],fusion['fwd_seq'],fusion['rev_seq'],fusion['fusion_type'],fusion['gene_name1'],fusion['gene_name2'], fusion['transcripts']) | |
| 329 ## Process ORFs and compare to matched deFuse and Trinity data. | |
| 330 ## Proteins must be at least 100 aa long, starting at the first "M" and must end with an "*". | |
| 331 if options.peptides: | |
| 332 with open(options.peptides) as fp: | |
| 333 for orf_full_id, seq in read_fasta(fp): | |
| 334 n += 1 | |
| 335 if len(seq) < options.min_pep_len: | |
| 336 continue | |
| 337 orf_type = re.match('^.* type:(\S+) .*$',orf_full_id).groups()[0] | |
| 338 ## if not seq[-1] == '*' and not options.incomplete_orfs: | |
| 339 ## if not orf_type 'complete' and not options.incomplete_orfs: | |
| 340 if orf_type not in options.orf_type: | |
| 341 continue | |
| 342 for i,fusion in enumerate(fusions): | |
| 343 if len(fusion['transcripts']) > 0: | |
| 344 for tx_id in fusion['transcripts']: | |
| 345 ## >m.196252 g.196252 ORF g.196252 m.196252 type:complete len:237 (+) comp100000_c5_seq2:315-1025(+) | |
| 346 ## >m.134565 g.134565 ORF g.134565 m.134565 type:5prime_partial len:126 (-) comp98702_c1_seq21:52-429(-) | |
| 347 if tx_id+':' not in orf_full_id: | |
| 348 continue | |
| 349 m = re.match("^.*%s:(\d+)-(\d+)[(]([+-])[)].*" % re.sub('([|.{}()$?^])','[\\1]',tx_id),orf_full_id) | |
| 350 if m: | |
| 351 if not m.groups() or len(m.groups()) < 3 or m.groups()[0] == None: | |
| 352 print >> sys.stderr, "Error:\n%s\n%s\n" % (tx_id,orf_full_id) | |
| 353 orf_id = orf_full_id.lstrip('>').split()[0] | |
| 354 if not tx_id in transcript_orfs: | |
| 355 transcript_orfs[tx_id] = [] | |
| 356 alignments = "%s%s%s %s%s%s" % (fusion['genomic_strand1'], fusion['gene_strand1'], fusion['gene_align_strand1'], fusion['genomic_strand2'], fusion['gene_strand2'], fusion['gene_align_strand2']) | |
| 357 # print >> sys.stdout, "%d %s bkpt:%d %s rc:%s (%s) %s" % (fusion['ordinal'], tx_id, int(fusion['transcripts'][tx_id]['bkpt']), str(m.groups()), str(fusion['transcripts'][tx_id]['revcompl']), alignments, orf_full_id) | |
| 358 start = seq.find('M') | |
| 359 pep_len = len(seq) | |
| 360 if pep_len - start < options.min_pep_len: | |
| 361 continue | |
| 362 orf_dict = dict() | |
| 363 transcript_orfs[tx_id].append(orf_dict) | |
| 364 fusions_with_orfs.add(i) | |
| 365 matched_orfs[orf_full_id] = seq | |
| 366 fusion['Protein'] = 'Yes' | |
| 367 tx_start = int(m.groups()[0]) | |
| 368 tx_end = int(m.groups()[1]) | |
| 369 tx_strand = m.groups()[2] | |
| 370 tx_bkpt = fusion['transcripts'][tx_id]['bkpt'] | |
| 371 orf_dict['orf_id'] = orf_id | |
| 372 orf_dict['tx_start'] = tx_start | |
| 373 orf_dict['tx_end'] = tx_end | |
| 374 orf_dict['tx_strand'] = tx_strand | |
| 375 orf_dict['tx_bkpt'] = tx_bkpt | |
| 376 orf_dict['seq'] = seq[:start].lower() + seq[start:] if start > 0 else seq | |
| 377 ## >m.208656 g.208656 ORF g.208656 m.208656 type:5prime_partial len:303 (+) comp100185_c2_seq9:2-910(+) | |
| 378 ## translate(tx34[1:910]) | |
| 379 ## translate(tx34[1:2048]) | |
| 380 ## comp99273_c1_seq1 len=3146 (-2772) | |
| 381 ## >m.158338 g.158338 ORF g.158338 m.158338 type:complete len:785 (-) comp99273_c1_seq1:404-2758(-) | |
| 382 ## translate(tx[-2758:-403]) | |
| 383 ## comp100185_c2_seq9 len=2048 (904) | |
| 384 ## novel protein sequence | |
| 385 ## find first novel AA | |
| 386 ## get prior n AAs | |
| 387 ## get novel AA seq thru n stop codons | |
| 388 ### tx_seq = matched_transcripts[tx_full_id] if tx_bkpt >= 0 else revcompl(tx_seq) | |
| 389 tx_seq = fusion['transcripts'][tx_id]['seq'] | |
| 390 orf_dict['tx_seq'] = tx_seq | |
| 391 novel_tx_seq = tx_seq[tx_start - 1:] if tx_strand == '+' else revcompl(tx_seq[:tx_end]) | |
| 392 read_thru_pep = translate(novel_tx_seq) | |
| 393 # fusion['transcripts'][tx_id]['revcompl'] = True | |
| 394 # tx_bkpt = fusion['transcripts'][tx_id]['bkpt'] | |
| 395 # bkpt_aa_pos = tx_bkpt - tx_start - 1 | |
| 396 # bkpt_aa_pos = (tx_bkpt - tx_start - 1) / 3 if tx_strand == '+' else tx_end | |
| 397 # print >> sys.stdout, "%s\n%s" % (seq,read_thru_pep) | |
| 398 stop_codons = get_stop_codons(novel_tx_seq) | |
| 399 if options.readthrough: | |
| 400 readthrough = options.readthrough + 1 | |
| 401 read_thru_pep = '*'.join(read_thru_pep.split('*')[:readthrough]) | |
| 402 stop_codons = stop_codons[:readthrough] | |
| 403 orf_dict['read_thru_pep'] = read_thru_pep | |
| 404 orf_dict['stop_codons'] = ','.join(stop_codons) | |
| 405 print >> sys.stdout, "fusions_with_orfs: %d %s\n matched_orfs: %d" % (len(fusions_with_orfs),fusions_with_orfs,len(matched_orfs)) | |
| 406 ## Alignments 3 columns, seq columns padded out to longest seq, UPPERCASE_match diffs lowercase | |
| 407 ### defuse_id pre_split_seq post_split_seq | |
| 408 ### trinity_id pre_split_seq post_split_seq | |
| 409 ## Transcripts alignment output | |
| 410 ## Peptide alignment output | |
| 411 ## Write reports | |
| 412 ## OS03_Matched_Rev.csv | |
| 413 ## "count","gene1","gene2","breakpoint","fusion","Trinity_transcript_ID","Trinity_transcript","ID1","protein" | |
| 414 if options.transcripts and options.matched: | |
| 415 #match_fields = ['ordinal','gene_name1','gene_name2','fwd_seq'] | |
| 416 outputMatchFile = open(options.matched,'w') | |
| 417 #print >> outputMatchFile, '\t'.join(["#fusion_id","cluster_id","gene1","gene2","breakpoint","fusion","Trinity_transcript_ID","Trinity_transcript","Trinity_ORF_Transcript","Trinity_ORF_ID","protein","read_through","stop_codons"]) | |
| 418 print >> outputMatchFile, '\t'.join(["#fusion_id","cluster_id","gene1","gene2","breakpoint","fusion","Trinity_transcript_ID","Trinity_transcript","Trinity_ORF_Transcript","Trinity_ORF_ID","protein","stop_codons"]) | |
| 419 for i,fusion in enumerate(fusions): | |
| 420 if len(fusion['transcripts']) > 0: | |
| 421 for tx_id in fusion['transcripts'].keys(): | |
| 422 if tx_id in transcript_orfs: | |
| 423 for orf_dict in transcript_orfs[tx_id]: | |
| 424 if 'tx_seq' not in orf_dict: | |
| 425 print >> sys.stderr, "orf_dict %s" % orf_dict | |
| 426 #fields = [str(fusion['ordinal']),str(fusion['cluster_id']),fusion['gene_name1'],fusion['gene_name2'],fusion['fwd_seq'],fusion['splitr_sequence'],tx_id, fusion['transcripts'][tx_id]['seq1']+'|'+fusion['transcripts'][tx_id]['seq2'],orf_dict['tx_seq'],orf_dict['orf_id'],orf_dict['seq'],orf_dict['read_thru_pep'],orf_dict['stop_codons']] | |
| 427 fields = [str(fusion['ordinal']),str(fusion['cluster_id']),fusion['gene_name1'],fusion['gene_name2'],fusion['fwd_seq'],fusion['splitr_sequence'],tx_id, fusion['transcripts'][tx_id]['seq1']+'|'+fusion['transcripts'][tx_id]['seq2'],orf_dict['tx_seq'],orf_dict['orf_id'],orf_dict['read_thru_pep'],orf_dict['stop_codons']] | |
| 428 print >> outputMatchFile, '\t'.join(fields) | |
| 429 outputMatchFile.close() | |
| 430 if options.transcripts and options.transcript_alignment: | |
| 431 if outputTxFile: | |
| 432 id_fields = ['gene_name1','alignments1','gene_name2','alignments2','span_count','probability','gene_chromosome1','gene_location1','gene_chromosome2','gene_location2','fusion_type','Transcript','Protein','flags'] | |
| 433 fa_width = 80 | |
| 434 for i,fusion in enumerate(fusions): | |
| 435 if len(fusion['transcripts']) > 0: | |
| 436 alignments1 = "%s%s%s" % (fusion['genomic_strand1'], fusion['gene_strand1'], fusion['gene_align_strand1']) | |
| 437 alignments2 = "%s%s%s" % (fusion['genomic_strand2'], fusion['gene_strand2'], fusion['gene_align_strand2']) | |
| 438 alignments = "%s%s%s %s%s%s" % (fusion['genomic_strand1'], fusion['gene_strand1'], fusion['gene_align_strand1'], fusion['genomic_strand2'], fusion['gene_strand2'], fusion['gene_align_strand2']) | |
| 439 fusion_id = "%s (%s) %s" % (i + 1,alignments,' '.join([str(fusion[x]) for x in report_fields])) | |
| 440 for tx_id in fusion['transcripts'].keys(): | |
| 441 m1 = fusion['transcripts'][tx_id]['match1'] | |
| 442 f_seq1 = fusion['split_seqs'][0][:-m1].lower() + fusion['split_seqs'][0][-m1:] | |
| 443 t_seq1 = fusion['transcripts'][tx_id]['seq1'][:-m1].lower() + fusion['transcripts'][tx_id]['seq1'][-m1:] | |
| 444 if len(f_seq1) > len(t_seq1): | |
| 445 t_seq1 = t_seq1.rjust(len(f_seq1),'.') | |
| 446 elif len(f_seq1) < len(t_seq1): | |
| 447 f_seq1 = f_seq1.rjust(len(t_seq1),'.') | |
| 448 m2 = fusion['transcripts'][tx_id]['match2'] | |
| 449 f_seq2 = fusion['split_seqs'][1][:m2] + fusion['split_seqs'][1][m2:].lower() | |
| 450 t_seq2 = fusion['transcripts'][tx_id]['seq2'][:m2] + fusion['transcripts'][tx_id]['seq2'][m2:].lower() | |
| 451 if len(f_seq2) > len(t_seq2): | |
| 452 t_seq2 = t_seq2.ljust(len(f_seq2),'.') | |
| 453 elif len(f_seq2) < len(t_seq2): | |
| 454 f_seq2 = f_seq2.ljust(len(t_seq2),'.') | |
| 455 print >> outputTxFile, ">%s\n%s\n%s" % (fusion_id,'\n'.join(textwrap.wrap(f_seq1,fa_width)),'\n'.join(textwrap.wrap(f_seq2,fa_width))) | |
| 456 print >> outputTxFile, "%s bkpt:%d rev_compl:%s\n%s\n%s" % (fusion['transcripts'][tx_id]['full_id'],fusion['transcripts'][tx_id]['bkpt'],str(fusion['transcripts'][tx_id]['revcompl']),'\n'.join(textwrap.wrap(t_seq1,fa_width)),'\n'.join(textwrap.wrap(t_seq2,fa_width))) | |
| 457 """ | |
| 458 if options.peptides and options.orf_alignment: | |
| 459 pass | |
| 460 """ | |
| 461 print >> outputFile,"%s\t%s" % ('#','\t'.join([report_colnames[x] for x in report_fields])) | |
| 462 for i,fusion in enumerate(fusions): | |
| 463 print >> outputFile,"%s\t%s" % (i + 1,'\t'.join([str(fusion[x]) for x in report_fields])) | |
| 464 | |
| 465 if __name__ == "__main__" : __main__() | |
| 466 |
