# HG changeset patch
# User jdv
# Date 1512410576 18000
# Node ID 192df6f6a41e181e31b722e84fbd92b177a63b7b
planemo upload for repository https://github.com/jvolkening/galaxy-tools/tree/master/tools/nanopore_qc commit 59d1272f707bdd73a3f7d085f96789e649d54240-dirty
diff -r 000000000000 -r 192df6f6a41e README.html
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/README.html Mon Dec 04 13:02:56 2017 -0500
@@ -0,0 +1,4 @@
+
Quality control for nanopore sequencing data
+
NanoporeQC is a Galaxy tool for quality control of data from Oxford Nanopore sequencers. It utilizes the summary table produced by Albacore to generate QC statistics and plots.
diff -r 000000000000 -r 192df6f6a41e README.md
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/README.md Mon Dec 04 13:02:56 2017 -0500
@@ -0,0 +1,11 @@
+# Quality control for nanopore sequencing data
+
+`NanoporeQC` is a Galaxy tool for quality control of data from Oxford Nanopore
+sequencers. It utilizes the summary table produced by Albacore to generate QC
+statistics and plots.
+
+## Attributions
+
+`NanoporeQC` was originally forked from the `minion_qc` codebase
+([https://github.com/roblanf/minion_qc](https://github.com/roblanf/minion_qc))
+
diff -r 000000000000 -r 192df6f6a41e nanopore_qc.R
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/nanopore_qc.R Mon Dec 04 13:02:56 2017 -0500
@@ -0,0 +1,508 @@
+#!/usr/bin/Rscript
+
+# MinionQC version 1.0
+# Copyright (C) 2017 Robert Lanfear
+#
+# This program is free software: you can redistribute it and/or modify it under
+# the terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# This program is distributed in the hope that it will be useful, but WITHOUT
+# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+# details. You should have received a copy of the GNU General Public License
+# along with this program. If not, see .
+
+
+# supress warnings
+options(warn=-1)
+
+library(ggplot2)
+library(plyr)
+library(reshape2)
+library(readr)
+library(yaml)
+suppressMessages(library(scales))
+#library(parallel)
+library(futile.logger)
+suppressPackageStartupMessages(library(data.table))
+suppressPackageStartupMessages(library(optparse))
+
+
+# option parsing #
+
+parser <- OptionParser()
+
+parser <- add_option(parser,
+ opt_str = c("-i", "--input"),
+ type = "character",
+ dest = 'input.file',
+ help="Input file or directory (required). Either a full path to a sequence_summary.txt file, or a full path to a directory containing one or more such files. In the latter case the directory is searched recursively."
+ )
+
+parser <- add_option(parser,
+ opt_str = c("-o", "--outputdirectory"),
+ type = "character",
+ dest = 'output.dir',
+ help="Output directory (required). If a single sequencing_summary.txt file is passed as input, then the output directory will contain just the plots associated with that file. If a directory containing more than one sequencing_summary.txt files is passed as input, then the plots will be put into sub-directories that have the same names as the parent directories of each sequencing_summary.txt file"
+ )
+
+parser <- add_option(parser,
+ opt_str = c("-q", "--qscore_cutoff"),
+ type="double",
+ default=7.0,
+ dest = 'q',
+ help="The cutoff value for the mean Q score of a read (default 7). Used to create separate plots for reads above and below this threshold"
+ )
+
+opt = parse_args(parser)
+
+input.file = opt$input.file
+output.dir = opt$output.dir
+q = opt$q
+
+# this is how we label the reads at least as good as q
+q_title = paste("Q>=", q, sep="")
+
+
+# build the map for R9.5
+p1 = data.frame(channel=33:64, row=rep(1:4, each=8), col=rep(1:8, 4))
+p2 = data.frame(channel=481:512, row=rep(5:8, each=8), col=rep(1:8, 4))
+p3 = data.frame(channel=417:448, row=rep(9:12, each=8), col=rep(1:8, 4))
+p4 = data.frame(channel=353:384, row=rep(13:16, each=8), col=rep(1:8, 4))
+p5 = data.frame(channel=289:320, row=rep(17:20, each=8), col=rep(1:8, 4))
+p6 = data.frame(channel=225:256, row=rep(21:24, each=8), col=rep(1:8, 4))
+p7 = data.frame(channel=161:192, row=rep(25:28, each=8), col=rep(1:8, 4))
+p8 = data.frame(channel=97:128, row=rep(29:32, each=8), col=rep(1:8, 4))
+
+q1 = data.frame(channel=1:32, row=rep(1:4, each=8), col=rep(16:9, 4))
+q2 = data.frame(channel=449:480, row=rep(5:8, each=8), col=rep(16:9, 4))
+q3 = data.frame(channel=385:416, row=rep(9:12, each=8), col=rep(16:9, 4))
+q4 = data.frame(channel=321:352, row=rep(13:16, each=8), col=rep(16:9, 4))
+q5 = data.frame(channel=257:288, row=rep(17:20, each=8), col=rep(16:9, 4))
+q6 = data.frame(channel=193:224, row=rep(21:24, each=8), col=rep(16:9, 4))
+q7 = data.frame(channel=129:160, row=rep(25:28, each=8), col=rep(16:9, 4))
+q8 = data.frame(channel=65:96, row=rep(29:32, each=8), col=rep(16:9, 4))
+
+map = rbind(p1, p2, p3, p4, p5, p6, p7, p8, q1, q2, q3, q4, q5, q6, q7, q8)
+
+add_cols <- function(d, min.q){
+ # take a sequencing sumamry file (d), and a minimum Q value you are interested in (min.q)
+ # return the same data frame with the following columns added
+ # cumulative.bases
+ # hour of run
+ # reads.per.hour
+
+ d = subset(d, mean_qscore_template >= min.q)
+
+ if(nrow(d)==0){
+ flog.error(paste("There are no reads with a mean Q score higher than your cutoff of ", min.q, ". Please choose a lower cutoff and try again.", sep = ""))
+ quit()
+ }
+
+ d = merge(d, map, by="channel")
+ d = d[with(d, order(start_time)), ] # sort by read length
+ d$cumulative.bases.time = cumsum(as.numeric(d$start_time))
+ d = d[with(d, order(-sequence_length_template)), ] # sort by read length
+ d$cumulative.bases = cumsum(as.numeric(d$sequence_length_template))
+ d$hour = d$start_time %/% 3600
+
+ # add the reads generated for each hour
+ reads.per.hour = as.data.frame(table(d$hour))
+ names(reads.per.hour) = c("hour", "reads_per_hour")
+ reads.per.hour$hour = as.numeric(as.character(reads.per.hour$hour))
+ d = merge(d, reads.per.hour, by = c("hour"))
+ return(d)
+}
+
+
+load_summary <- function(filepath, min.q){
+ # load a sequencing summary and add some info
+ # min.q is a vector of length 2 defining 2 levels of min.q to have
+ # by default the lowest value is -Inf, i.e. includes all reads. The
+ # other value in min.q is set by the user at the command line
+ d = read_tsv(filepath, col_types = cols_only(channel = 'i',
+ num_events_template = 'i',
+ sequence_length_template = 'i',
+ mean_qscore_template = 'n',
+ sequence_length_2d = 'i',
+ mean_qscore_2d = 'n',
+ start_time = 'n'))
+
+ if("sequence_length_2d" %in% names(d)){
+ # it's a 1D2 or 2D run
+ d$sequence_length_template = as.numeric(as.character(d$sequence_length_2d))
+ d$mean_qscore_template = as.numeric(as.character(d$mean_qscore_2d))
+ d$num_events_template = NA
+ d$start_time = as.numeric(as.character(d$start_time))
+
+ }else{
+ d$sequence_length_template = as.numeric(as.character(d$sequence_length_template))
+ d$mean_qscore_template = as.numeric(as.character(d$mean_qscore_template))
+ d$num_events_template = as.numeric(as.character(d$num_events_template))
+ d$start_time = as.numeric(as.character(d$start_time))
+ }
+
+ d$events_per_base = d$num_events_template/d$sequence_length_template
+
+ flowcell = basename(dirname(filepath))
+
+ # add columns for all the reads
+ d1 = add_cols(d, min.q[1])
+ d1$Q_cutoff = "All reads"
+
+ # add columns for just the reads that pass the user Q threshold
+ d2 = add_cols(d, min.q[2])
+ d2$Q_cutoff = q_title
+
+ # bind those two together into one data frame
+ d = as.data.frame(rbindlist(list(d1, d2)))
+
+ # name the flowcell (useful for analyses with >1 flowcell)
+ d$flowcell = flowcell
+
+ # make sure this is a factor
+ d$Q_cutoff = as.factor(d$Q_cutoff)
+
+
+ keep = c("hour","start_time", "channel", "sequence_length_template", "mean_qscore_template", "row", "col", "cumulative.bases", "cumulative.bases.time", "reads_per_hour", "Q_cutoff", "flowcell", "events_per_base")
+ d = d[keep]
+
+ d$start_bin = cut(d$start_time, 9,labels=c(1:9))
+ write.table(d,"foo.tsv",sep="\t",quote=F)
+
+ return(d)
+}
+
+reads.gt <- function(d, len){
+ # return the number of reads in data frame d
+ # that are at least as long as length len
+ return(length(which(d$sequence_length_template>=len)))
+}
+
+bases.gt <- function(d, len){
+ # return the number of bases contained in reads from
+ # data frame d
+ # that are at least as long as length len
+ reads = subset(d, sequence_length_template >= len)
+ return(sum(as.numeric(reads$sequence_length_template)))
+}
+
+log10_minor_break = function (...){
+ # function to add minor breaks to a log10 graph
+ # hat-tip: https://stackoverflow.com/questions/30179442/plotting-minor-breaks-on-a-log-scale-with-ggplot
+ function(x) {
+ minx = floor(min(log10(x), na.rm=T))-1;
+ maxx = ceiling(max(log10(x), na.rm=T))+1;
+ n_major = maxx-minx+1;
+ major_breaks = seq(minx, maxx, by=1)
+ minor_breaks =
+ rep(log10(seq(1, 9, by=1)), times = n_major)+
+ rep(major_breaks, each = 9)
+ return(10^(minor_breaks))
+ }
+}
+
+binSearch <- function(min, max, df, t = 100000) {
+ # binary search algorithm, thanks to https://stackoverflow.com/questions/46292438/optimising-a-calculation-on-every-cumulative-subset-of-a-vector-in-r/46303384#46303384
+ # the aim is to return the number of reads in a dataset (df)
+ # that comprise the largest subset of reads with an N50 of t
+ # we use this to calculte the number of 'ultra long' reads
+ # which are defined as those with N50 > 100KB
+ mid = floor(mean(c(min, max)))
+ if (mid == min) {
+ if (df$sequence_length_template[min(which(df$cumulative.bases>df$cumulative.bases[min]/2))] < t) {
+ return(min - 1)
+ } else {
+ return(max - 1)
+ }
+ }
+
+ n = df$sequence_length_template[min(which(df$cumulative.bases>df$cumulative.bases[mid]/2))]
+ if (n >= t) {
+ return(binSearch(mid, max, df))
+ } else {
+ return(binSearch(min, mid, df))
+ }
+}
+
+
+summary.stats <- function(d, Q_cutoff="All reads"){
+ # Calculate summary stats for a single value of min.q
+
+ rows = which(as.character(d$Q_cutoff)==Q_cutoff)
+ d = d[rows,]
+ d = d[with(d, order(-sequence_length_template)), ] # sort by read length, just in case
+
+ total.bases = sum(as.numeric(d$sequence_length_template))
+ total.reads = nrow(d)
+ N50.length = d$sequence_length_template[min(which(d$cumulative.bases > (total.bases/2)))]
+ mean.length = round(mean(as.numeric(d$sequence_length_template)), digits = 1)
+ median.length = round(median(as.numeric(d$sequence_length_template)), digits = 1)
+ max.length = max(as.numeric(d$sequence_length_template))
+ mean.q = round(mean(d$mean_qscore_template), digits = 1)
+ median.q = round(median(d$mean_qscore_template), digits = 1)
+
+ #calculate ultra-long reads and bases (max amount of data with N50>100KB)
+ ultra.reads = binSearch(1, nrow(d), d, t = 100000)
+ if(ultra.reads>=1){
+ ultra.gigabases = sum(as.numeric(d$sequence_length_template[1:ultra.reads]))/1000000000
+ }else{
+ ultra.gigabases = 0
+ }
+
+ reads = list(
+ reads.gt(d, 10000),
+ reads.gt(d, 20000),
+ reads.gt(d, 50000),
+ reads.gt(d, 100000),
+ reads.gt(d, 200000),
+ reads.gt(d, 500000),
+ reads.gt(d, 1000000),
+ ultra.reads)
+ names(reads) = c(">10kb", ">20kb", ">50kb", ">100kb", ">200kb", ">500kb", ">1m", "ultralong")
+
+ bases = list(
+ bases.gt(d, 10000)/1000000000,
+ bases.gt(d, 20000)/1000000000,
+ bases.gt(d, 50000)/1000000000,
+ bases.gt(d, 100000)/1000000000,
+ bases.gt(d, 200000)/1000000000,
+ bases.gt(d, 500000)/1000000000,
+ bases.gt(d, 1000000)/1000000000,
+ ultra.gigabases)
+ names(bases) = c(">10kb", ">20kb", ">50kb", ">100kb", ">200kb", ">500kb", ">1m", "ultralong")
+
+ return(list('total.gigabases' = total.bases/1000000000,
+ 'total.reads' = total.reads,
+ 'N50.length' = N50.length,
+ 'mean.length' = mean.length,
+ 'median.length' = median.length,
+ 'max.length' = max.length,
+ 'mean.q' = mean.q,
+ 'median.q' = median.q,
+ 'reads' = reads,
+ 'gigabases' = bases
+ ))
+}
+
+channel.summary <- function(d){
+ # calculate summaries of what happened in each of the channels
+ # of a flowcell
+
+ a = ddply(d, .(channel),
+ summarize,
+ total.bases = sum(sequence_length_template),
+ total.reads = sum(which(sequence_length_template>=0)),
+ mean.read.length = mean(sequence_length_template),
+ median.read.length = median(sequence_length_template))
+ b = melt(a, id.vars = c("channel"))
+ return(b)
+}
+
+
+single.flowcell <- function(input.file, output.dir, q=8){
+ # wrapper function to analyse data from a single flowcell
+ # input.file is a sequencing_summary.txt file from a 1D run
+ # output.dir is the output directory into which to write results
+ # q is the cutoff used for Q values, set by the user
+ flog.info(paste("Loading input file:", input.file))
+ d = load_summary(input.file, min.q=c(-Inf, q))
+
+ flowcell = unique(d$flowcell)
+
+ flog.info(paste(sep = "", flowcell, ": creating output directory:", output.dir))
+ dir.create(output.dir)
+ out.txt = file.path(output.dir, "summary.yaml")
+
+ flog.info(paste(sep = "", flowcell, ": summarising input file for flowcell"))
+ all.reads.summary = summary.stats(d, Q_cutoff = "All reads")
+ q10.reads.summary = summary.stats(d, Q_cutoff = q_title)
+
+ summary = list("input file" = input.file,
+ "All reads" = all.reads.summary,
+ cutoff = q10.reads.summary,
+ "notes" = 'ultralong reads refers to the largest set of reads with N50>100KB')
+
+ names(summary)[3] = q_title
+
+ write(as.yaml(summary), out.txt)
+
+ muxes = seq(from = 0, to = max(d$hour), by = 8)
+
+ # make plots
+ flog.info(paste(sep = "", flowcell, ": plotting length histogram"))
+ len.lims <- quantile(d$sequence_length_template,c(0.01,0.99))
+
+ p1 = ggplot(d, aes(x = sequence_length_template)) +
+ geom_histogram(bins = 200, fill="steelblue") +
+ scale_x_log10(breaks=round(10^pretty(log10(len.lims),n=5),0),limits=len.lims) +
+ facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y") +
+ #theme(text = element_text(size = 15)) +
+ theme_linedraw() +
+ xlab("Read length") +
+ ylab("Number of reads")
+ ggsave(filename = file.path(output.dir, "length_histogram.png"), width = 7, height = 4, dpi=300, plot = p1)
+ ggsave(filename = file.path(output.dir, "length_histogram.screen.png"), width = 7, height = 4, dpi=90, plot = p1)
+
+ flog.info(paste(sep = "", flowcell, ": plotting mean Q score histogram"))
+ q.lims <- quantile(d$mean_qscore_template,c(0.005,0.995))
+ p2 = ggplot(subset(d, Q_cutoff=="All reads"), aes(x = mean_qscore_template)) +
+ geom_histogram(bins = 200, fill="steelblue") +
+ xlim(q.lims) +
+ geom_vline(xintercept=q) +
+ #theme(text = element_text(size = 15)) +
+ theme_linedraw() +
+ xlab("Mean Q score of read") +
+ ylab("Number of reads")
+ ggsave(filename = file.path(output.dir, "q_histogram.png"), width = 7, height = 4, dpi=300, plot = p2)
+ ggsave(filename = file.path(output.dir, "q_histogram.screen.png"), width = 7, height = 4, dpi=90, plot = p2)
+
+
+ flog.info(paste(sep = "", flowcell, ": plotting flowcell overview"))
+
+ df <- data.frame(row=integer(),col=integer(),bin=integer(), quality=numeric())
+
+ # swap rows and columns
+ for (b in c(1,5,9)) {
+ m <- matrix(data=rep(0,512),nrow=16,ncol=32)
+ for (r in 1:32) {
+ for (c in 1:16) {
+ sub <- subset(d, Q_cutoff=="All reads" & col == c & row == r & start_bin == b)
+ Q <- median(sub$mean_qscore_template)
+ df <- rbind(df, list(row=r, col=c, bin=b, quality=Q) )
+ }
+ }
+ }
+
+ df$bin <- factor(df$bin)
+ levels(df$bin) <- c("Run start", "Run middle", "Run end")
+ p5 = ggplot(df, aes(col, row)) +
+ geom_tile(aes(fill = quality), color="white") +
+ scale_fill_gradient(low = "white", high="steelblue") +
+ xlab("Column") +
+ ylab("Row") +
+ facet_wrap(~bin, ncol=3) +
+ theme_linedraw() +
+ theme(panel.grid.minor = element_blank(), panel.grid.major=element_blank())
+ #theme(text = element_text(size = 40), axis.text.x = element_text(size=12), axis.text.y = element_text(size=12), legend.text=element_text(size=12))
+ ggsave(filename = file.path(output.dir, "flowcell_overview.png"), width = 7, height = 4, dpi=300, plot = p5)
+ ggsave(filename = file.path(output.dir, "flowcell_overview.screen.png"), width = 7, height = 4, dpi=90, plot = p5)
+
+ flog.info(paste(sep = "", flowcell, ": plotting cumulative yield summary"))
+ p5a = ggplot(d, aes(x=start_time/3600, y=cumulative.bases.time, colour = Q_cutoff)) +
+ geom_line(size = 1) +
+ geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) +
+ xlab("Elapsed time (hrs)") +
+ ylab("Total yield in bases") +
+ scale_colour_discrete(guide = guide_legend(title = "Reads")) +
+ scale_x_continuous() +
+ theme_linedraw()
+ #theme(text = element_text(size = 15))
+
+ ggsave(filename = file.path(output.dir, "cumulative_yield.png"), width = 7, height = 4, dpi=300, plot = p5a)
+ ggsave(filename = file.path(output.dir, "cumulative_yield.screen.png"), width = 7, height = 4, dpi=90, plot = p5a)
+
+ flog.info(paste(sep = "", flowcell, ": plotting flowcell yield summary"))
+ p6 = ggplot(d, aes(x=sequence_length_template, y=cumulative.bases, colour = Q_cutoff)) +
+ geom_line(size = 1) +
+ xlab("Minimum read length") +
+ ylab("Total yield in bases") +
+ scale_colour_discrete(guide = guide_legend(title = "Reads")) +
+ #theme(text = element_text(size = 15))
+ theme_linedraw()
+ xmax = max(d$sequence_length_template[which(d$cumulative.bases > 0.01 * max(d$cumulative.bases))])
+ p6 = p6 + scale_x_continuous(limits = c(0, xmax))
+
+ ggsave(filename = file.path(output.dir, "yield_summary.png"), width = 7, height = 4, dpi=300, plot = p6)
+ ggsave(filename = file.path(output.dir, "yield_summary.screen.png"), width = 7, height = 4, dpi=90, plot = p6)
+
+ flog.info(paste(sep = "", flowcell, ": plotting sequence length over time"))
+ e = subset(d, Q_cutoff=="All reads")
+ e$Q = paste(">=", q, sep="")
+ e$Q[which(e$mean_qscore_template0){
+ add.g = data.frame(hour = add.g, reads_per_hour = 0, Q_cutoff = "All reads")
+ g = rbind(g, add.g)
+ }
+ add.h = all[which(all %in% h$hour == FALSE)]
+ if(length(add.h)>0){
+ add.h = data.frame(hour = add.h, reads_per_hour = 0, Q_cutoff = q_title)
+ h = rbind(h, add.h)
+ }
+ i = rbind(g, h)
+ i$Q_cutoff = as.character(i$Q_cutoff)
+ i$Q_cutoff[which(i$Q_cutoff==q_title)] = paste("Q>=", q, sep="")
+ p9 = ggplot(i, aes(x=hour, y=reads_per_hour, colour = Q_cutoff, group = Q_cutoff)) +
+ geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) +
+ #geom_point() +
+ geom_line(size=1) +
+ xlab("Elapsed time (hrs)") +
+ ylab("Number of reads per hour") +
+ ylim(0, NA) +
+ scale_color_discrete(guide = guide_legend(title = "Reads")) +
+ theme_linedraw()
+ ggsave(filename = file.path(output.dir, "reads_per_hour.png"), width = 7, height = 4, dpi=300, plot = p9)
+ ggsave(filename = file.path(output.dir, "reads_per_hour.screen.png"), width = 7, height = 4, dpi=90, plot = p9)
+
+ flog.info(paste(sep = "", flowcell, ": plotting read length vs. q score scatterplot"))
+ p10 = ggplot(subset(d, Q_cutoff=="All reads"), aes(x = sequence_length_template, y = mean_qscore_template, colour = events_per_base)) +
+ geom_point(alpha=0.05, size = 0.4) +
+ scale_x_log10(minor_breaks=log10_minor_break()) +
+ labs(colour='Events per base\n(log scale)\n') +
+ theme(text = element_text(size = 15)) +
+ xlab("Read length") +
+ ylab("Mean Q score of read") +
+ theme_linedraw()
+
+ if(max(d$events_per_base, na.rm=T)>0){
+ # a catch for 1D2 runs which don't have events per base
+ p10 = p10 + scale_colour_distiller(trans = "log", labels = scientific, palette = 'Spectral')
+ }
+
+ ggsave(filename = file.path(output.dir, "length_vs_q.png"), width = 7, height = 4, dpi=300, plot = p10)
+ ggsave(filename = file.path(output.dir, "length_vs_q.screen.png"), width = 7, height = 4, dpi=90, plot = p10)
+
+ return(d)
+}
+
+if(file_test("-f", input.file)==TRUE){
+ # if it's an existing file (not a folder) just run one analysis
+ d = single.flowcell(input.file, output.dir, q)
+}else{
+ #WTF
+ flog.warn(paste("Could find a sequencing summary file in your input which was: ",
+ input.file,
+ "\nThe input must be a sequencing_summary.txt file produced by Albacore"))
+}
diff -r 000000000000 -r 192df6f6a41e nanopore_qc.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/nanopore_qc.xml Mon Dec 04 13:02:56 2017 -0500
@@ -0,0 +1,67 @@
+
+
+ QC report for nanopore data
+
+
+ r-ggplot2
+ r-plyr
+ r-reshape2
+ r-readr
+ r-yaml
+ r-scales
+ r-futile.logger
+ r-data.table
+ r-optparse
+ r-mgcv
+ perl-yaml-libyaml
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff -r 000000000000 -r 192df6f6a41e yaml_to_html.pl
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/yaml_to_html.pl Mon Dec 04 13:02:56 2017 -0500
@@ -0,0 +1,209 @@
+#!/usr/bin/env perl
+
+use strict;
+use warnings;
+use 5.012;
+
+use YAML::XS qw/LoadFile/;
+use autodie;
+
+my ($fn_in, $fn_out) = @ARGV;
+
+die "Can't find or read input file: $!\n"
+ if (! -r $fn_in);
+
+# set output filehandle based on arguments
+my $fh = \*STDOUT;
+if (defined $fn_out) {
+ open $fh, '>', $fn_out;
+}
+
+my $yaml = LoadFile($ARGV[0]);
+
+convert($yaml);
+
+sub convert {
+
+ my ($yaml) = @_;
+
+ print {$fh} header();
+
+ say {$fh} "
Summary statistics
";
+
+ for my $grp (sort keys %$yaml) {
+
+ my $ref = $yaml->{$grp};
+
+ next if (! ref $ref);
+ next if (! defined $ref->{'total.gigabases'});
+
+ print {$fh} <<"CONTENT"
+