Mercurial > repos > jdv > nanonet
diff nanonet_1D.xml @ 0:decd5688d719 draft
planemo upload for repository https://github.com/jvolkening/galaxy-tools/tree/master/tools/nanonet commit bf5788ad5a3293446a50a3246b44ba09174c9b71
author | jdv |
---|---|
date | Wed, 30 Aug 2017 02:53:02 -0400 |
parents | |
children | 57447db0ec78 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/nanonet_1D.xml Wed Aug 30 02:53:02 2017 -0400 @@ -0,0 +1,86 @@ +<tool id="nanonet_1D" name="Nanonet 1D" version="2.0.0"> + + <description>ONT development basecaller</description> + + <!-- ***************************************************************** --> + + <!-- + <requirements> + <requirement type="package" version="2.0.0">nanonet</requirement> + </requirements> + --> + + <!-- ***************************************************************** --> + + <version_command>echo "2.0.0"</version_command> + + <!-- ***************************************************************** --> + + <command detect_errors="aggressive"> + <![CDATA[ + + python3 $__tool_directory__/nanonet_1D.py $input $output \${GALAXY_SLOTS:-1} + + ]]> + </command> + + <!-- ***************************************************************** --> + + <inputs> + + <param name="input" type="data" format="fast5_archive" label="Input reads" /> + + </inputs> + + <!-- ***************************************************************** --> + + <outputs> + + <data name="output" format="fastq" label="${tool.name} on ${on_string} (called.fastq)" /> + + </outputs> + + <!-- ***************************************************************** --> + + <tests> + <!-- multithreaded output is non-deterministic, so simply compare file + sizes --> + <test> + <param name="input" value="test_data.fast5.tar.gz" ftype="fast5_archive" /> + <output name="output" file="test_data.fastq" compare="sim_size" delta="0" /> + </test> + </tests> + + <!-- ***************************************************************** --> + + <help> + <![CDATA[ + +**Description** + +Nanonet provides recurrent neural network basecalling for Oxford Nanopore +MinION data. It represents the first generation of such a basecaller from +Oxford Nanopore Technologies, and is provided as a technology demonstrator. +Nanonet is provided unsupported by Oxford Nanopore Technologies, see +LICENSE.md for more information. + +For training networks, Nanonet leverages currennt to run recurrent neural +networks. Currennt is generally run with GPUs to aid performance but can be +run in a CPU only environment. The basecaller does not require currennt, and +is written in pure python with minimal requirements. + +The Galaxy wrapper has modified nanonet to take a gzip tarball of FAST5 reads +as input, such as can be produced by `poretools combine`, and always outputs a +single FASTQ file. + +This is the 1D basecaller. + + ]]> + </help> + + <!-- ***************************************************************** --> + + <citations> + </citations> + +</tool>