Mercurial > repos > jdv > albacore
view albacore_denoise.xml @ 1:0a4f83207e53 draft
planemo upload for repository https://github.com/jvolkening/galaxy-tools/tree/master/tools/albacore commit 4aa7a76a7b29c425dd89a020979e835d785d3c95-dirty
author | jdv |
---|---|
date | Wed, 06 Sep 2017 12:12:52 -0400 |
parents | |
children | b658298e65d8 |
line wrap: on
line source
<tool id="albacore_denoise" name="Albacore de-noise" version="0.001"> <description>Filter noise from barcode bins</description> <!-- ***************************************************************** --> <!-- <requirements> <requirement type="package" version="1.2.6">albacore</requirement> </requirements> --> <!-- ***************************************************************** --> <version_command>echo "0.001"</version_command> <!-- ***************************************************************** --> <command detect_errors="aggressive"> <![CDATA[ perl $__tool_directory__/denoise.pl --table $table #if $filter.type == 'topN' --n_keep ${filter.n_keep} #else --min_score ${filter.min_score} --min_frac ${filter.min_frac} #end if $remove_unclassified #for $input in $inputs --input ${input} --name ${input.name} #end for --summary $summary ]]> </command> <!-- ***************************************************************** --> <inputs> <param name="inputs" type="data_collection" collection_type="list" format="fast5_archive" label="Input reads" multiple="true" /> <param name="table" type="data" format="tabular" label="Read table" /> <conditional name="filter"> <param name="type" type="select" label="Filtering type"> <option value="cutoffs" selected="true">By cutoff</option> <option value="topN">Top N bins</option> </param> <when value="cutoffs"> <param name="min_score" value="70" type="float" min="0" max="100" label="Minimum average score (0-100)" /> <param name="min_frac" value="0.05" type="float" min="0" label="Minimum fraction of average count" /> </when> <when value="topN"> <param name="n_keep" value="1" type="integer" min="1" label="Number of top bins to keep" /> </when> </conditional> <param name="remove_unclassified" type="boolean" checked="true" truevalue="--remove_unclassified" falsevalue="" label="Remove unclassified reads" /> </inputs> <!-- ***************************************************************** --> <outputs> <collection type="list" name="outputs" label="${tool.name} on ${on_string} (reads)"> <discover_datasets pattern="(?P<name>.*)\.fast5\.tar\.gz$" directory="outputs" format="fast5_archive" /> </collection> <data name="summary" format="tabular" label="${tool.name} on ${on_string} (summary)" /> </outputs> <!-- ***************************************************************** --> <!-- <tests> <test> <param name="input" value="test_data.fast5.tar.gz" ftype="fast5_archive" /> <output name="output" file="test_data.fastq" compare="diff" /> </test> </tests> --> <!-- ***************************************************************** --> <help> <![CDATA[ **Description** This script will filter "noise" bins from the barcoded output of Albacore based on read counts and mean quality scores for each barcode bin. It can either filter the top N bins (if you know the number of barcodes in your sample) or filter based on minimum read count (as ratio to average value over all bin) and minimum average score. ]]> </help> <!-- ***************************************************************** --> <citations> </citations> </tool>