Mercurial > repos > iuc > virhunter
comparison virhunter.xml @ 0:6052fcc0d113 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/VirHunter commit 628688c1302dbf972e48806d2a5bafe27847bdcc
| author | iuc |
|---|---|
| date | Wed, 09 Nov 2022 12:18:36 +0000 |
| parents | |
| children | 341bcf4d4fcd |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:6052fcc0d113 |
|---|---|
| 1 <tool id="virhunter" name="virhunter" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.05"> | |
| 2 <description> | |
| 3 Deep learning method to identify viruses in sequencing datasets.. | |
| 4 </description> | |
| 5 <macros> | |
| 6 <import>macros.xml</import> | |
| 7 </macros> | |
| 8 <xrefs> | |
| 9 <xref type="bio.tools">virhunter</xref> | |
| 10 </xrefs> | |
| 11 <expand macro="requirements"/> | |
| 12 <command detect_errors="exit_code"><![CDATA[ | |
| 13 | |
| 14 mkdir -p '${predicted_fragments.extra_files_path}' && | |
| 15 python '$__tool_directory__/predict.py' | |
| 16 --test_ds '${fasta_file}' | |
| 17 --weights '${weights.fields.path}' | |
| 18 --out_path '${predicted_fragments.extra_files_path}' | |
| 19 --return_viral True | |
| 20 --limit $limit | |
| 21 && cp '${predicted_fragments.extra_files_path}'/predicted_fragments.csv predicted_fragments.csv | |
| 22 && cp '${predicted_fragments.extra_files_path}'/predicted.csv predicted.csv | |
| 23 && cp '${predicted_fragments.extra_files_path}'/viral.fasta viral.fasta | |
| 24 | |
| 25 ]]></command> | |
| 26 <inputs> | |
| 27 <param name="fasta_file" type="data" format="fasta" label="DNA FASTA file(s)"/> | |
| 28 <param name="weights" type="select" label="Select a reference model" help="If your model of interest is not listed, contact the Galaxy team"> | |
| 29 <options from_data_table="virhunter_models"> | |
| 30 <validator type="no_options" message="No models are available for the selected input dataset" /> | |
| 31 </options> | |
| 32 </param> | |
| 33 <param argument="--limit" type="integer" min="0" value="750" label="Minimum contig length" help="Do not predict contigs shorter than this value. Default: 750" /> | |
| 34 </inputs> | |
| 35 <outputs> | |
| 36 <data format="csv" name="predicted_fragments" from_work_dir="predicted_fragments.csv" label="${tool.name} on ${on_string}: predicted fragments"/> | |
| 37 <data format="csv" name="predicted" from_work_dir="predicted.csv" label="${tool.name} on ${on_string}: predicted "/> | |
| 38 <data format="fasta" name="viral" from_work_dir="viral.fasta" label="${tool.name} on ${on_string}: viral FASTA file" /> | |
| 39 </outputs> | |
| 40 <tests> | |
| 41 <test> | |
| 42 <param name="fasta_file" value="viruses.fasta"/> | |
| 43 <param name="weights" value="test"/> | |
| 44 <output name="predicted_fragments" file="predicted_fragments.csv" ftype="csv" lines_diff="2"/> | |
| 45 <output name="predicted" file="predicted.csv" ftype="csv" lines_diff="2"/> | |
| 46 <output name="viral" file="viral.fasta" ftype="fasta" lines_diff="2"/> | |
| 47 </test> | |
| 48 </tests> | |
| 49 | |
| 50 <help> | |
| 51 <![CDATA[ | |
| 52 VirHunter is a deep learning method that uses Convolutional Neural Networks (CNNs) and a Random Forest Classifier to identify viruses in sequening datasets. More precisely, VirHunter classifies previously assembled contigs as viral, host and bacterial (contamination). | |
| 53 ]]></help> | |
| 54 <expand macro="citations" /> | |
| 55 </tool> |
