Mercurial > repos > iuc > semibin
view semibin.xml @ 3:8673617e7e09 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/main/tools/semibin commit 2c08a2e49a2844efe92340c5a9e9c8323e4a33d6
| author | iuc |
|---|---|
| date | Tue, 28 Oct 2025 08:15:27 +0000 |
| parents | 9de6b5e570df |
| children |
line wrap: on
line source
<tool id="semibin" name="SemiBin" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> <description> for Semi-supervised Metagenomic Binning </description> <macros> <import>macros.xml</import> </macros> <expand macro="biotools"/> <expand macro="requirements"/> <expand macro="version"/> <command detect_errors="exit_code"><![CDATA[ #import re #if $mode.select != "single": #if $mode.align_select.align_select == "bam": @BAM_FILES@ #else: @STROBEALIGN_FILES@ #end if #else: @BAM_FILES@ #end if @FASTA_FILES@ SemiBin2 #if $mode.select == 'single' or $mode.select == 'co' single_easy_bin #if $mode.select == 'single' and str($mode.environment) != '' --environment '$mode.environment' #end if #if $mode.ref.select == "cached": --reference-db-data-dir '$mode.ref.cached_db.fields.path' #end if #if $mode.ref.select == "taxonomy" --taxonomy-annotation-table '$mode.ref.taxonomy_annotation_table' #end if #else multi_easy_bin --separator '$separator' #if $mode.ref.select == "cached": --reference-db-data-dir '$mode.ref.cached_db.fields.path' #end if #if $mode.ref.select == "taxonomy" --taxonomy-annotation-table #for $e in $mode.ref.taxonomy_annotation_table '$e' #end for #end if #end if --input-fasta 'contigs.$input_fasta.ext' #if $mode.select == "single": --input-bam *.bam #else: #if $mode.align_select.align_select == "bam": --input-bam *.bam #else: -a *.txt #end if #end if --output 'output' --cannot-name 'cannot' @MIN_LEN@ --orf-finder '$orf_finder' --random-seed $random_seed #if $annot.ml_threshold: --ml-threshold $annot.ml_threshold #end if --epoches $training.epoches --batch-size $training.batch_size --max-node $bin.max_node --max-edges $bin.max_edges --minfasta-kbs $bin.minfasta_kbs #if ($mode.select == 'single' or $mode.select == 'co') and $extra_output and "pre_reclustering_bins" in $extra_output --write-pre-reclustering-bins #end if --compression none --threads \${GALAXY_SLOTS:-1} --processes \${GALAXY_SLOTS:-1} && echo "output" && ls output ]]></command> <inputs> <conditional name="mode"> <expand macro="mode_select"/> <when value="single"> <expand macro="input-fasta-single"/> <expand macro="input-bam-single"/> <expand macro="ref-single"/> <expand macro="environment"/> </when> <when value="co"> <expand macro="input-fasta-single"/> <conditional name="align_select"> <expand macro="bam_or_strobealign"/> <when value="bam"> <expand macro="input-bam-multi"/> </when> <when value="txt"> <expand macro="input-txt"/> </when> </conditional> <expand macro="ref-single"/> </when> <when value="multi"> <expand macro="input-fasta-multi"/> <conditional name="align_select"> <expand macro="bam_or_strobealign"/> <when value="bam"> <expand macro="input-bam-multi"/> </when> <when value="txt"> <expand macro="input-txt"/> </when> </conditional> <expand macro="ref-multi"/> </when> </conditional> <expand macro="min_len"/> <expand macro="orf-finder"/> <expand macro="random-seed"/> <section name="annot" title="Contig annotations" expanded="true"> <expand macro="ml-threshold"/> </section> <section name="training" title="Training"> <expand macro="epoches"/> <expand macro="batch-size"/> </section> <section name="bin" title="Binning"> <expand macro="max-node"/> <expand macro="max-edges"/> <expand macro="minfasta-kbs"/> </section> <param name="extra_output" type="select" multiple="true" optional="true" label="Extra outputs" help="In addition to the training data"> <option value="data">Training data</option> <option value="coverage">Coverage files</option> <option value="contigs">Contigs (if multiple sample)</option> <option value="pre_reclustering_bins">Pre-reclustering bins (only single sample and co-assembly)</option> </param> </inputs> <outputs> <collection name="output_pre_recluster_bins" type="list" label="${tool.name} on ${on_string}: Reconstructed bins before reclustering"> <filter>mode['select']!="multi" and extra_output and "pre_reclustering_bins" in extra_output</filter> <discover_datasets pattern="(?P<designation>.*).fa" format="fasta" directory="output/output_prerecluster_bins"/> </collection> <collection name="output_after_recluster_bins" type="list" label="${tool.name} on ${on_string}: Reconstructed bins after reclustering"> <filter>mode['select']!="multi" and extra_output and "pre_reclustering_bins" in extra_output</filter> <discover_datasets pattern="(?P<designation>.*).fa" format="fasta" directory="output/output_recluster_bins"/> </collection> <collection name="output_bins" type="list" label="${tool.name} on ${on_string}: Reconstructed bins"> <filter>mode['select']!="multi" and not "pre_reclustering_bins" in extra_output</filter> <discover_datasets pattern="(?P<designation>.*).fa" format="fasta" directory="output/output_bins"/> </collection> <collection name="multi_bins" type="list" label="${tool.name} on ${on_string}: Reconstructed bins before reclustering (multi_bins)"> <filter>mode['select']=="multi"</filter> <discover_datasets pattern="(?P<designation>.*).fa" format="fasta" directory="output/bins"/> </collection> <data name="single_data" format="csv" from_work_dir="output/data.csv" label="${tool.name} on ${on_string}: Training data"> <filter>(mode['select']=="single" or mode['select']=="co") and extra_output and "data" in extra_output</filter> </data> <data name="single_data_split" format="csv" from_work_dir="output/data_split.csv" label="${tool.name} on ${on_string}: Split training data"> <filter>(mode['select']=="single" or mode['select']=="co") and extra_output and "data" in extra_output</filter> </data> <collection name="multi_data" type="list" label="${tool.name} on ${on_string}: Training data per sample"> <filter>mode['select']=="multi" and extra_output and "data" in extra_output</filter> <discover_datasets pattern="(?P<designation>.*)\/data.csv" format="csv" directory="output/samples/" recurse="true" match_relative_path="true"/> </collection> <collection name="multi_data_split" type="list" label="${tool.name} on ${on_string}: Split training data per sample"> <filter>mode['select']=="multi" and extra_output and "data" in extra_output</filter> <discover_datasets pattern="(?P<designation>.*)\/data_split.csv" format="csv" directory="output/samples/" recurse="true" match_relative_path="true"/> </collection> <expand macro="generate_sequence_features_extra_outputs_main"/> </outputs> <tests> <test expect_num_outputs="5"> <conditional name="mode"> <param name="select" value="single"/> <param name="input_fasta" ftype="fasta.gz" value="input_single.fasta.gz"/> <param name="input_bam" ftype="bam" value="input_single.bam"/> <conditional name="ref"> <param name="select" value="taxonomy"/> <param name="taxonomy_annotation_table" value="taxonomy.tsv"/> </conditional> <param name="environment" value="human_gut"/> </conditional> <conditional name="min_len"> <param name="method" value="min-len"/> <param name="min_len" value="0" /> </conditional> <param name="orf_finder" value="prodigal"/> <param name="random_seed" value="0"/> <section name="training"> <param name="epoches" value="20"/> <param name="batch_size" value="2048"/> </section> <section name="bin"> <param name="max_node" value="1"/> <param name="max_edges" value="200"/> <param name="minfasta_kbs" value="200"/> </section> <param name="extra_output" value="data,coverage,contigs"/> <output name="single_data" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g4k_7"/> </assert_contents> </output> <output name="single_data_split" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g1k_6_2"/> </assert_contents> </output> <output name="single_cov" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="0.027"/> </assert_contents> </output> <output name="single_split_cov" ftype="csv"> <assert_contents> <has_size value="1" delta="1"/> </assert_contents> </output> </test> <test expect_num_outputs="5"> <conditional name="mode"> <param name="select" value="single"/> <param name="input_fasta" ftype="fasta.bz2" value="input_single.fasta.bz2"/> <param name="input_bam" ftype="bam" value="input_single.bam"/> <conditional name="ref"> <param name="select" value="ml"/> </conditional> <param name="environment" value="human_gut"/> </conditional> <conditional name="min_len"> <param name="method" value="min-len"/> <param name="min_len" value="0" /> </conditional> <param name="orf_finder" value="prodigal"/> <param name="random_seed" value="0"/> <section name="training"> <param name="epoches" value="20"/> <param name="batch_size" value="2048"/> </section> <section name="bin"> <param name="max_node" value="1"/> <param name="max_edges" value="200"/> <param name="minfasta_kbs" value="200"/> </section> <param name="extra_output" value="data,coverage,contigs"/> <output name="single_data" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g4k_7"/> </assert_contents> </output> <output name="single_data_split" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g1k_6_2"/> </assert_contents> </output> <output name="single_cov" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="0.027"/> </assert_contents> </output> <output name="single_split_cov" ftype="csv"> <assert_contents> <has_size value="1" delta="1"/> </assert_contents> </output> </test> <test expect_num_outputs="3"> <conditional name="mode"> <param name="select" value="co"/> <param name="input_fasta" ftype="fasta" value="input_single.fasta"/> <conditional name="align_select"> <param name="align_select" value="bam"/> <param name="input_bam" ftype="bam" value="input_coassembly_sorted1.bam,input_coassembly_sorted2.bam,input_coassembly_sorted3.bam,input_coassembly_sorted4.bam,input_coassembly_sorted5.bam"/> </conditional> <conditional name="ref"> <param name="select" value="ml"/> </conditional> </conditional> <conditional name="min_len"> <param name="method" value="ratio"/> <param name="ratio" value="0.05"/> </conditional> <param name="orf_finder" value="fast-naive"/> <param name="random_seed" value="0"/> <section name="training"> <param name="epoches" value="20"/> <param name="batch_size" value="2048"/> </section> <section name="bin"> <param name="max_node" value="1"/> <param name="max_edges" value="200"/> <param name="minfasta_kbs" value="200"/> </section> <param name="extra_output" value="coverage"/> <output_collection name="co_cov_bam" count="5"> <element name="0" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g2k_7"/> </assert_contents> </element> <element name="1" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g2k_7"/> </assert_contents> </element> <element name="4" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g2k_7"/> </assert_contents> </element> </output_collection> <output_collection name="co_split_cov_bam" count="5"> <element name="0" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g2k_7_2"/> </assert_contents> </element> <element name="1" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g2k_7_2"/> </assert_contents> </element> <element name="2" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g2k_7_2"/> </assert_contents> </element> </output_collection> </test> <test expect_num_outputs="3"> <conditional name="mode"> <param name="select" value="co"/> <param name="input_fasta" ftype="fasta" value="input_single.fasta"/> <conditional name="align_select"> <param name="align_select" value="bam"/> <param name="input_bam" ftype="bam" value="input_coassembly_sorted1.bam,input_coassembly_sorted2.bam,input_coassembly_sorted3.bam,input_coassembly_sorted4.bam,input_coassembly_sorted5.bam"/> </conditional> <conditional name="ref"> <param name="select" value="taxonomy"/> <param name="taxonomy_annotation_table" value="taxonomy.tsv"/> </conditional> </conditional> <conditional name="min_len"> <param name="method" value="ratio"/> <param name="ratio" value="0.05"/> </conditional> <param name="orf_finder" value="fast-naive"/> <param name="random_seed" value="0"/> <section name="training"> <param name="epoches" value="20"/> <param name="batch_size" value="2048"/> </section> <section name="bin"> <param name="max_node" value="1"/> <param name="max_edges" value="200"/> <param name="minfasta_kbs" value="200"/> </section> <param name="extra_output" value="coverage"/> <output_collection name="co_cov_bam" count="5"> <element name="0" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g2k_7"/> </assert_contents> </element> <element name="1" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g2k_7"/> </assert_contents> </element> <element name="4" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g2k_7"/> </assert_contents> </element> </output_collection> <output_collection name="co_split_cov_bam" count="5"> <element name="0" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g2k_7_2"/> </assert_contents> </element> <element name="1" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g2k_7_2"/> </assert_contents> </element> <element name="2" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g2k_7_2"/> </assert_contents> </element> </output_collection> </test> <test expect_num_outputs="3"> <conditional name="mode"> <param name="select" value="co"/> <param name="input_fasta" ftype="fasta" value="input_single.fasta"/> <conditional name="align_select"> <param name="align_select" value="bam"/> <param name="input_bam" ftype="bam" value="input_coassembly_sorted1.bam,input_coassembly_sorted2.bam,input_coassembly_sorted3.bam,input_coassembly_sorted4.bam,input_coassembly_sorted5.bam"/> </conditional> <conditional name="ref"> <param name="select" value="taxonomy"/> <param name="taxonomy_annotation_table" value="taxonomy.tsv"/> </conditional> </conditional> <conditional name="min_len"> <param name="method" value="ratio"/> <param name="ratio" value="0.05"/> </conditional> <param name="orf_finder" value="fast-naive"/> <param name="random_seed" value="0"/> <section name="annot"> <param name="ml_threshold" value="0"/> </section> <section name="training"> <param name="epoches" value="20"/> <param name="batch_size" value="2048"/> </section> <section name="bin"> <param name="max_node" value="1"/> <param name="max_edges" value="200"/> <param name="minfasta_kbs" value="200"/> </section> <param name="extra_output" value="coverage"/> <output_collection name="co_cov_bam" count="5"> <element name="0" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g2k_7"/> </assert_contents> </element> <element name="1" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g2k_7"/> </assert_contents> </element> <element name="4" ftype="csv"> <assert_contents> <has_text text="g1k_0"/> <has_text text="g2k_7"/> </assert_contents> </element> </output_collection> <output_collection name="co_split_cov_bam" count="5"> <element name="0" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g2k_7_2"/> </assert_contents> </element> <element name="1" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g2k_7_2"/> </assert_contents> </element> <element name="2" ftype="csv"> <assert_contents> <has_text text="g1k_0_1"/> <has_text text="g2k_7_2"/> </assert_contents> </element> </output_collection> </test> <test expect_num_outputs="1"> <conditional name="mode"> <param name="select" value="single"/> <param name="input_fasta" ftype="fasta" value="input_single.fasta"/> <param name="input_bam" ftype="bam" value="input_single.bam"/> <conditional name="ref"> <param name="select" value="cached"/> <param name="cached_db" value="test-db"/> </conditional> </conditional> <conditional name="min_len"> <param name="method" value="ratio"/> <param name="ratio" value="0.05"/> </conditional> <param name="orf_finder" value="fast-naive"/> <param name="random_seed" value="0"/> <section name="annot"> <param name="ml_threshold" value="0"/> </section> <section name="training"> <param name="epoches" value="20"/> <param name="batch_size" value="2048"/> </section> <section name="bin"> <param name="max_node" value="1"/> <param name="max_edges" value="200"/> <param name="minfasta_kbs" value="200"/> </section> </test> <test expect_num_outputs="2"> <conditional name="mode"> <param name="select" value="single"/> <param name="input_fasta" ftype="fasta" value="input_single.fasta"/> <param name="input_bam" ftype="bam" value="input_single.bam"/> <conditional name="ref"> <param name="select" value="cached"/> <param name="cached_db" value="test-db"/> </conditional> </conditional> <conditional name="min_len"> <param name="method" value="ratio"/> <param name="ratio" value="0.05"/> </conditional> <param name="orf_finder" value="fast-naive"/> <param name="random_seed" value="0"/> <section name="annot"> <param name="ml_threshold" value="0"/> </section> <section name="training"> <param name="epoches" value="20"/> <param name="batch_size" value="2048"/> </section> <section name="bin"> <param name="max_node" value="1"/> <param name="max_edges" value="200"/> <param name="minfasta_kbs" value="200"/> </section> <param name="extra_output" value="pre_reclustering_bins"/> <output_collection name="output_pre_recluster_bins"> <element name="SemiBin_0" ftype="fasta"> <assert_contents> <has_text text="g1k_0"/> </assert_contents> </element> <element name="SemiBin_1" ftype="fasta"> <assert_contents> <has_text text="g2k_0"/> </assert_contents> </element> <element name="SemiBin_2" ftype="fasta"> <assert_contents> <has_text text="g3k_0"/> </assert_contents> </element> </output_collection> <output_collection name="output_after_recluster_bins" count="1"> <element name="SemiBin_30" ftype="fasta"> <assert_contents> <has_text text="g3k_0"/> </assert_contents> </element> </output_collection> </test> <test expect_num_outputs="8"> <conditional name="mode"> <param name="select" value="multi"/> <conditional name="multi_fasta"> <param name="select" value="concatenated"/> <param name="input_fasta" ftype="fasta" value="input_multi.fasta.gz"/> </conditional> <conditional name="align_select"> <param name="align_select" value="bam"/> <param name="input_bam" ftype="bam" value="input_multi_sorted1.bam,input_multi_sorted2.bam,input_multi_sorted3.bam,input_multi_sorted4.bam,input_multi_sorted5.bam,input_multi_sorted6.bam,input_multi_sorted7.bam,input_multi_sorted8.bam,input_multi_sorted9.bam,input_multi_sorted10.bam"/> </conditional> <conditional name="ref"> <param name="select" value="taxonomy"/> <param name="taxonomy_annotation_table" value="taxonomy.tsv,taxonomy_2.tsv,taxonomy_3.tsv,taxonomy_4.tsv,taxonomy_5.tsv,taxonomy_6.tsv,taxonomy_7.tsv,taxonomy_8.tsv,taxonomy_9.tsv,taxonomy_10.tsv"/> </conditional> </conditional> <conditional name="min_len"> <param name="method" value="ratio"/> <param name="ratio" value="0.05"/> </conditional> <param name="orf_finder" value="fast-naive"/> <param name="random_seed" value="0"/> <section name="training"> <param name="epoches" value="20"/> <param name="batch_size" value="2048"/> </section> <section name="bin"> <param name="max_node" value="1"/> <param name="max_edges" value="200"/> <param name="minfasta_kbs" value="200"/> </section> <param name="extra_output" value="data,coverage,contigs"/> <output_collection name="multi_bins" count="0"/> <output_collection name="multi_data" count="10"> <element name="S8" ftype="csv"> <assert_contents> <has_text text="g1k_0,"/> </assert_contents> </element> </output_collection> <output_collection name="multi_data_split" count="10"> <element name="S8" ftype="csv"> <assert_contents> <has_text text="g1k_0_1,"/> </assert_contents> </element> </output_collection> <output_collection name="multi_cov_bam" count="10"> <element name="8" ftype="csv"> <assert_contents> <has_text text="S1:g1k_5,"/> </assert_contents> </element> </output_collection> <output_collection name="multi_cov_sample_bam" count="10"> <element name="S8" ftype="csv"> <assert_contents> <has_text text="g1k_3"/> </assert_contents> </element> </output_collection> <output_collection name="multi_split_cov_bam" count="10"> <element name="8" ftype="csv"> <assert_contents> <has_text text="S1:g1k_5_1,0."/> </assert_contents> </element> </output_collection> <output_collection name="multi_split_cov_sample_bam" count="10"> <element name="8" ftype="csv"> <assert_contents> <has_text text="g1k_3_1"/> </assert_contents> </element> </output_collection> <output_collection name="multi_contigs" count="10"> <element name="S8" ftype="fasta"> <assert_contents> <has_text text=">g1k_0"/> </assert_contents> </element> </output_collection> </test> <test expect_num_outputs="6"> <conditional name="mode"> <param name="select" value="co"/> <param name="input_fasta" ftype="fasta" value="input_multi.fasta.gz"/> <conditional name="align_select"> <param name="align_select" value="txt"/> <param name="abundance" ftype="txt" value="strobealign_1.txt,strobealign_2.txt,strobealign_3.txt,strobealign_4.txt,strobealign_5.txt"/> </conditional> <conditional name="ref"> <param name="select" value="taxonomy"/> <param name="taxonomy_annotation_table" value="taxonomy.tsv"/> </conditional> </conditional> <conditional name="min_len"> <param name="method" value="ratio"/> <param name="ratio" value="0.05"/> </conditional> <param name="orf_finder" value="fast-naive"/> <param name="random_seed" value="0"/> <section name="annot"> <param name="ml_threshold" value="0"/> </section> <section name="training"> <param name="epoches" value="20"/> <param name="batch_size" value="2048"/> </section> <section name="bin"> <param name="max_node" value="0.15"/> <param name="max_edges" value="20"/> <param name="minfasta_kbs" value="20"/> </section> <param name="extra_output" value="data,coverage,contigs,pre_reclustering_bins"/> </test> <test expect_num_outputs="6"> <conditional name="mode"> <param name="select" value="multi"/> <conditional name="multi_fasta"> <param name="select" value="concatenated"/> <param name="input_fasta" ftype="fasta" value="input_multi.fasta.gz"/> </conditional> <conditional name="align_select"> <param name="align_select" value="txt"/> <param name="abundance" ftype="txt" value="strobealign_1.txt,strobealign_2.txt,strobealign_3.txt,strobealign_4.txt,strobealign_5.txt"/> </conditional> <conditional name="ref"> <param name="select" value="taxonomy"/> <param name="taxonomy_annotation_table" value="taxonomy.tsv,taxonomy_2.tsv,taxonomy_3.tsv,taxonomy_4.tsv,taxonomy_5.tsv,taxonomy_6.tsv,taxonomy_7.tsv,taxonomy_8.tsv,taxonomy_9.tsv,taxonomy_10.tsv"/> </conditional> </conditional> <conditional name="min_len"> <param name="method" value="ratio"/> <param name="ratio" value="0.05"/> </conditional> <param name="orf_finder" value="fast-naive"/> <param name="random_seed" value="0"/> <section name="annot"> <param name="ml_threshold" value="0"/> </section> <section name="training"> <param name="epoches" value="20"/> <param name="batch_size" value="2048"/> </section> <section name="bin"> <param name="max_node" value="0.15"/> <param name="max_edges" value="30"/> <param name="minfasta_kbs" value="30"/> </section> <param name="extra_output" value="data,coverage,contigs"/> <output_collection name="multi_bins" count="10"/> <output_collection name="multi_data" count="10"> <element name="S8" ftype="csv"> <assert_contents> <has_text text="g1k_0,"/> </assert_contents> </element> </output_collection> <output_collection name="multi_data_split" count="10"> <element name="S8" ftype="csv"> <assert_contents> <has_text text="g1k_0_1,"/> </assert_contents> </element> </output_collection> <output_collection name="multi_cov_txt" count="10"> <element name="S8" ftype="csv"> <assert_contents> <has_text text="g1k_5,"/> </assert_contents> </element> </output_collection> <output_collection name="multi_split_cov_txt" count="10"> <element name="S8" ftype="csv"> <assert_contents> <has_text text="g1k_5_1,1."/> </assert_contents> </element> </output_collection> <output_collection name="multi_contigs" count="10"> <element name="S8" ftype="fasta"> <assert_contents> <has_text text=">g1k_0"/> </assert_contents> </element> </output_collection> </test> </tests> <help><![CDATA[ **Please note that there is a known issue with Semibin2 where results may be inconsistent across runs on different, despite a set seed. This may cause issues with reproducibility.** For more information, see this [issue]{https://github.com/BigDataBiology/SemiBin/issues/186} on their repository: https://github.com/BigDataBiology/SemiBin/issues/186 @HELP_HEADER@ Inputs ====== @HELP_INPUT_FASTA@ @HELP_INPUT_BAM@ ]]></help> <expand macro="citations"/> </tool>
