Mercurial > repos > iuc > scanpy_cluster_reduce_dimension
comparison cluster_reduce_dimension.xml @ 12:9740d430d9f3 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit c21958f44b81d740191999fb6015d5ae69538ee0
| author | iuc |
|---|---|
| date | Wed, 31 Jul 2024 18:05:14 +0000 |
| parents | afdac2e27f1b |
| children | b43f391d2919 |
comparison
equal
deleted
inserted
replaced
| 11:336f7f889475 | 12:9740d430d9f3 |
|---|---|
| 1 <tool id="scanpy_cluster_reduce_dimension" name="Cluster, infer trajectories and embed" version="@galaxy_version@" profile="@profile@"> | 1 <tool id="scanpy_cluster_reduce_dimension" name="Cluster, infer trajectories and embed" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@profile@"> |
| 2 <description>with scanpy</description> | 2 <description>with scanpy</description> |
| 3 <expand macro="bio_tools"/> | |
| 4 <macros> | 3 <macros> |
| 5 <import>macros.xml</import> | 4 <import>macros.xml</import> |
| 6 <xml name="pca_inputs"> | 5 <xml name="pca_inputs"> |
| 7 <param argument="n_comps" type="integer" min="0" value="50" label="Number of principal components to compute" help="If the value is larger than the number of observations the number of observations is used instead"/> | 6 <param argument="n_comps" type="integer" min="0" value="50" label="Number of principal components to compute" help="If the value is larger than the number of observations the number of observations is used instead"/> |
| 8 <param argument="dtype" type="text" value="float32" label="Numpy data type string to which to convert the result" help=""> | 7 <param argument="dtype" type="text" value="float32" label="Numpy data type string to which to convert the result" help=""> |
| 18 </when> | 17 </when> |
| 19 <when value="False"> | 18 <when value="False"> |
| 20 <param argument="zero_center" type="boolean" truevalue="True" falsevalue="False" checked="true" | 19 <param argument="zero_center" type="boolean" truevalue="True" falsevalue="False" checked="true" |
| 21 label="Compute standard PCA from covariance matrix?" | 20 label="Compute standard PCA from covariance matrix?" |
| 22 help="If not, it omits zero-centering variables (uses *TruncatedSVD* from scikit-learn), which allows to handle sparse input efficiently."/> | 21 help="If not, it omits zero-centering variables (uses *TruncatedSVD* from scikit-learn), which allows to handle sparse input efficiently."/> |
| 23 <expand macro="svd_solver"/> | 22 <expand macro="svd_solver"/> |
| 24 <param argument="random_state" type="integer" value="0" label="Initial states for the optimization" help=""/> | 23 <param argument="random_state" type="integer" value="0" label="Initial states for the optimization" help=""/> |
| 25 </when> | 24 </when> |
| 26 </conditional> | 25 </conditional> |
| 27 <param argument="use_highly_variable" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Use highly variable genes only?" help="They should be use if they have been determined beforehand."/> | 26 <param argument="use_highly_variable" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Use highly variable genes only?" help="They should be use if they have been determined beforehand."/> |
| 28 </xml> | 27 </xml> |
| 59 random_state=$method.pca.random_state, | 58 random_state=$method.pca.random_state, |
| 60 #end if | 59 #end if |
| 61 use_highly_variable=$method.use_highly_variable | 60 use_highly_variable=$method.use_highly_variable |
| 62 ]]></token> | 61 ]]></token> |
| 63 </macros> | 62 </macros> |
| 63 <expand macro="bio_tools"/> | |
| 64 <expand macro="requirements"> | 64 <expand macro="requirements"> |
| 65 <requirement type="package" version="0.7.0">louvain</requirement> | |
| 66 </expand> | 65 </expand> |
| 67 <expand macro="version_command"/> | 66 <expand macro="version_command"/> |
| 68 <command detect_errors="exit_code"><![CDATA[ | 67 <command detect_errors="exit_code"><![CDATA[ |
| 69 @CMD@ | 68 @CMD@ |
| 70 ]]></command> | 69 ]]></command> |
| 109 copy =False) | 108 copy =False) |
| 110 | 109 |
| 111 #else if $method.method == 'tl.tsne' | 110 #else if $method.method == 'tl.tsne' |
| 112 sc.tl.tsne( | 111 sc.tl.tsne( |
| 113 adata=adata, | 112 adata=adata, |
| 114 #if $method.n_pcs | 113 #if str($method.n_pcs) != '' |
| 115 n_pcs=$method.n_pcs, | 114 n_pcs=$method.n_pcs, |
| 116 #end if | 115 #end if |
| 117 perplexity=$method.perplexity, | 116 perplexity=$method.perplexity, |
| 118 early_exaggeration=$method.early_exaggeration, | 117 early_exaggeration=$method.early_exaggeration, |
| 119 learning_rate=$method.learning_rate, | 118 learning_rate=$method.learning_rate, |
| 125 sc.tl.umap( | 124 sc.tl.umap( |
| 126 adata=adata, | 125 adata=adata, |
| 127 min_dist=$method.min_dist, | 126 min_dist=$method.min_dist, |
| 128 spread=$method.spread, | 127 spread=$method.spread, |
| 129 n_components=$method.n_components, | 128 n_components=$method.n_components, |
| 130 #if $method.maxiter | 129 #if str($method.maxiter) != '' |
| 131 maxiter=$method.maxiter, | 130 maxiter=$method.maxiter, |
| 132 #end if | 131 #end if |
| 133 alpha=$method.alpha, | 132 alpha=$method.alpha, |
| 134 gamma=$method.gamma, | 133 gamma=$method.gamma, |
| 135 negative_sample_rate=$method.negative_sample_rate, | 134 negative_sample_rate=$method.negative_sample_rate, |
| 136 init_pos='$method.init_pos', | 135 init_pos='$method.init_pos', |
| 137 random_state=$method.random_state, | 136 random_state=$method.random_state, |
| 138 copy=False) | 137 copy=False) |
| 139 | 138 |
| 140 #else if $method.method == 'tl.draw_graph' | 139 #else if $method.method == 'tl.draw_graph' |
| 141 | |
| 142 #if str($method.adjacency) != 'None' | 140 #if str($method.adjacency) != 'None' |
| 143 from scipy import io | 141 from scipy import io |
| 144 adjacency = io.mmread('$method.adjacency') | 142 adjacency = io.mmread('$method.adjacency') |
| 145 #end if | 143 #end if |
| 146 | 144 |
| 147 sc.tl.draw_graph( | 145 sc.tl.draw_graph( |
| 148 adata=adata, | 146 adata=adata, |
| 149 layout='$method.layout', | 147 layout='$method.layout', |
| 150 #if str($method.root) != '' | 148 #if $method.root |
| 151 #set $root=([int(x.strip()) for x in str($method.root).split(',')]) | 149 #set $root=([int(x.strip()) for x in str($method.root).split(',')]) |
| 152 root=$root, | 150 root=$root, |
| 153 #end if | 151 #end if |
| 154 random_state=$method.random_state, | 152 random_state=$method.random_state, |
| 155 #if str($method.init_pos) != '' | 153 #if $method.init_pos |
| 156 init_pos='$method.init_pos', | 154 init_pos='$method.init_pos', |
| 157 #end if | 155 #end if |
| 158 #if str($method.adjacency) != 'None' | 156 #if str($method.adjacency) != 'None' |
| 159 adjacency=adjacency, | 157 adjacency=adjacency, |
| 160 #end if | 158 #end if |
| 161 #if str($method.key_ext) != '' | 159 #if $method.key_ext |
| 162 key_ext='$method.key_ext', | 160 key_ext='$method.key_ext', |
| 163 #end if | 161 #end if |
| 164 copy=False) | 162 copy=False) |
| 165 | 163 |
| 166 #else if $method.method == "tl.paga" | 164 #else if $method.method == "tl.paga" |
| 177 n_dcs=$method.n_dcs, | 175 n_dcs=$method.n_dcs, |
| 178 n_branchings=$method.n_branchings, | 176 n_branchings=$method.n_branchings, |
| 179 min_group_size=$method.min_group_size, | 177 min_group_size=$method.min_group_size, |
| 180 allow_kendall_tau_shift=$method.allow_kendall_tau_shift, | 178 allow_kendall_tau_shift=$method.allow_kendall_tau_shift, |
| 181 copy=False) | 179 copy=False) |
| 180 | |
| 181 #else if $method.method == "tl.embedding_density" | |
| 182 sc.tl.embedding_density( | |
| 183 adata=adata, | |
| 184 basis='$method.basis', | |
| 185 #if $method.groupby | |
| 186 groupby='$method.groupby', | |
| 187 #end if | |
| 188 #if $method.key_added | |
| 189 key_added='$method.key_added', | |
| 190 #end if | |
| 191 ) | |
| 192 | |
| 182 #end if | 193 #end if |
| 183 | 194 |
| 184 @CMD_anndata_write_outputs@ | 195 @CMD_anndata_write_outputs@ |
| 185 ]]></configfile> | 196 ]]></configfile> |
| 186 </configfiles> | 197 </configfiles> |
| 196 <option value="tl.tsne">t-distributed stochastic neighborhood embedding (tSNE), using 'tl.tsne'</option> | 207 <option value="tl.tsne">t-distributed stochastic neighborhood embedding (tSNE), using 'tl.tsne'</option> |
| 197 <option value="tl.umap">Embed the neighborhood graph using UMAP, using 'tl.umap'</option> | 208 <option value="tl.umap">Embed the neighborhood graph using UMAP, using 'tl.umap'</option> |
| 198 <option value="tl.draw_graph">Force-directed graph drawing, using 'tl.draw_graph'</option> | 209 <option value="tl.draw_graph">Force-directed graph drawing, using 'tl.draw_graph'</option> |
| 199 <option value="tl.dpt">Infer progression of cells through geodesic distance along the graph, using 'tl.dpt'</option> | 210 <option value="tl.dpt">Infer progression of cells through geodesic distance along the graph, using 'tl.dpt'</option> |
| 200 <option value="tl.paga">Generate cellular maps of differentiation manifolds with complex topologies, using 'tl.paga'</option> | 211 <option value="tl.paga">Generate cellular maps of differentiation manifolds with complex topologies, using 'tl.paga'</option> |
| 212 <option value="tl.embedding_density">Calculate the density of cells in an embedding (per condition)</option> | |
| 201 </param> | 213 </param> |
| 202 <when value="tl.louvain"> | 214 <when value="tl.louvain"> |
| 203 <conditional name="flavor"> | 215 <conditional name="flavor"> |
| 204 <param argument="flavor" type="select" label="Flavor for the clustering" help=""> | 216 <param argument="flavor" type="select" label="Flavor for the clustering" help=""> |
| 205 <option value="vtraag">vtraag (much more powerful)</option> | 217 <option value="vtraag">vtraag (much more powerful)</option> |
| 280 </when> | 292 </when> |
| 281 <when value="tl.paga"> | 293 <when value="tl.paga"> |
| 282 <param argument="groups" type="text" value="louvain" label="Key for categorical in the input" help="You can pass your predefined groups by choosing any categorical annotation of observations ('adata.obs')."> | 294 <param argument="groups" type="text" value="louvain" label="Key for categorical in the input" help="You can pass your predefined groups by choosing any categorical annotation of observations ('adata.obs')."> |
| 283 <expand macro="sanitize_query" /> | 295 <expand macro="sanitize_query" /> |
| 284 </param> | 296 </param> |
| 285 <param argument="use_rna_velocity" type="boolean" truevalue="False" falsevalue="False" checked="false" label="Use RNA velocity to orient edges in the abstracted graph and estimate transitions?" help="Requires that 'adata.uns' contains a directed single-cell graph with key '['velocyto_transitions']'. This feature might be subject to change in the future."/> | 297 <param argument="use_rna_velocity" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Use RNA velocity to orient edges in the abstracted graph and estimate transitions?" help="Requires that 'adata.uns' contains a directed single-cell graph with key '['velocyto_transitions']'. This feature might be subject to change in the future."/> |
| 286 <param argument="model" type="select" label="PAGA connectivity model" help=""> | 298 <param argument="model" type="select" label="PAGA connectivity model" help=""> |
| 287 <option value="v1.2">v1.2</option> | 299 <option value="v1.2">v1.2</option> |
| 288 <option value="v1.0">v1.0</option> | 300 <option value="v1.0">v1.0</option> |
| 289 </param> | 301 </param> |
| 290 </when> | 302 </when> |
| 291 </conditional> | 303 <when value="tl.embedding_density"> |
| 304 <param argument="basis" type="text" value="umap" label="The embedding over which the density will be calculated." help="This embedded representation should be found in adata.obsm['X_[basis]']"> | |
| 305 <expand macro="sanitize_query" /> | |
| 306 </param> | |
| 307 <param argument="groupby" type="text" optional="true" value="" label="Key for categorical observation/cell annotation for which densities are calculated per category." > | |
| 308 <expand macro="sanitize_query" /> | |
| 309 </param> | |
| 310 <param argument="key_added" type="text" optional="true" value="" label="Name of the .obs covariate that will be added with the density estimates."> | |
| 311 <expand macro="sanitize_query" /> | |
| 312 </param> | |
| 313 </when> | |
| 314 </conditional> | |
| 292 <expand macro="inputs_common_advanced"/> | 315 <expand macro="inputs_common_advanced"/> |
| 293 </inputs> | 316 </inputs> |
| 294 <outputs> | 317 <outputs> |
| 295 <expand macro="anndata_outputs"/> | 318 <expand macro="anndata_outputs"/> |
| 296 </outputs> | 319 </outputs> |
| 297 <tests> | 320 <tests> |
| 298 <test> | 321 <test expect_num_outputs="2"> |
| 299 <!-- test 0 --> | 322 <!-- test 1 --> |
| 300 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | 323 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> |
| 301 <conditional name="method"> | 324 <conditional name="method"> |
| 302 <param name="method" value="tl.louvain"/> | 325 <param name="method" value="tl.louvain"/> |
| 303 <conditional name="flavor"> | 326 <conditional name="flavor"> |
| 304 <param name="flavor" value="vtraag"/> | 327 <param name="flavor" value="vtraag"/> |
| 324 <has_text_matching expression="use_weights=False"/> | 347 <has_text_matching expression="use_weights=False"/> |
| 325 </assert_contents> | 348 </assert_contents> |
| 326 </output> | 349 </output> |
| 327 <output name="anndata_out" file="tl.louvain.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 350 <output name="anndata_out" file="tl.louvain.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
| 328 </test> | 351 </test> |
| 329 <test> | 352 <test expect_num_outputs="2"> |
| 330 <!-- test 1 --> | 353 <!-- test 2 --> |
| 331 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | 354 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> |
| 332 <conditional name="method"> | 355 <conditional name="method"> |
| 333 <param name="method" value="tl.leiden"/> | 356 <param name="method" value="tl.leiden"/> |
| 334 <param name="random_state" value="1"/> | 357 <param name="random_state" value="1"/> |
| 335 <param name="random_state" value="10"/> | 358 <param name="random_state" value="10"/> |
| 350 <has_text_matching expression="n_iterations=-1"/> | 373 <has_text_matching expression="n_iterations=-1"/> |
| 351 </assert_contents> | 374 </assert_contents> |
| 352 </output> | 375 </output> |
| 353 <output name="anndata_out" file="tl.leiden.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 376 <output name="anndata_out" file="tl.leiden.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
| 354 </test> | 377 </test> |
| 355 <test> | 378 <test expect_num_outputs="2"> |
| 356 <!-- test 1 --> | 379 <!-- test 3 --> |
| 357 <param name="adata" value="krumsiek11.h5ad" /> | 380 <param name="adata" value="krumsiek11.h5ad" /> |
| 358 <conditional name="method"> | 381 <conditional name="method"> |
| 359 <param name="method" value="pp.pca"/> | 382 <param name="method" value="pp.pca"/> |
| 360 <param name="n_comps" value="50"/> | 383 <param name="n_comps" value="50"/> |
| 361 <param name="dtype" value="float32"/> | 384 <param name="dtype" value="float32"/> |
| 382 <has_text_matching expression="use_highly_variable=False"/> | 405 <has_text_matching expression="use_highly_variable=False"/> |
| 383 </assert_contents> | 406 </assert_contents> |
| 384 </output> | 407 </output> |
| 385 <output name="anndata_out" file="pp.pca.krumsiek11.h5ad" ftype="h5ad" compare="sim_size" delta="100000" delta_frac="0.15"/> | 408 <output name="anndata_out" file="pp.pca.krumsiek11.h5ad" ftype="h5ad" compare="sim_size" delta="100000" delta_frac="0.15"/> |
| 386 </test> | 409 </test> |
| 387 <!--<test> | 410 <test expect_num_outputs="2"> |
| 388 < test 3 > | 411 <!-- test 4 --> |
| 389 <param name="adata" value="krumsiek11.h5ad" /> | 412 <param name="adata" value="krumsiek11.h5ad" /> |
| 390 <conditional name="method"> | 413 <conditional name="method"> |
| 391 <param name="method" value="pp.pca"/> | 414 <param name="method" value="pp.pca"/> |
| 392 <param name="n_comps" value="20"/> | 415 <param name="n_comps" value="20"/> |
| 393 <param name="dtype" value="float32"/> | 416 <param name="dtype" value="float32"/> |
| 395 <param name="chunked" value="True"/> | 418 <param name="chunked" value="True"/> |
| 396 <param name="chunk_size" value="50"/> | 419 <param name="chunk_size" value="50"/> |
| 397 </conditional> | 420 </conditional> |
| 398 <param name="use_highly_variable" value="false"/> | 421 <param name="use_highly_variable" value="false"/> |
| 399 </conditional> | 422 </conditional> |
| 400 <assert_stdout> | 423 <section name="advanced_common"> |
| 401 <has_text_matching expression="sc.pp.pca"/> | 424 <param name="show_log" value="true" /> |
| 402 <has_text_matching expression="data=adata"/> | 425 </section> |
| 403 <has_text_matching expression="n_comps=20"/> | 426 <output name="hidden_output"> |
| 404 <has_text_matching expression="dtype='float32'"/> | 427 <assert_contents> |
| 405 <has_text_matching expression="copy=False"/> | 428 <has_text_matching expression="sc.pp.pca"/> |
| 406 <has_text_matching expression="chunked=True"/> | 429 <has_text_matching expression="data=adata"/> |
| 407 <has_text_matching expression="chunk_size=50"/> | 430 <has_text_matching expression="dtype='float32'"/> |
| 408 <has_text_matching expression="use_highly_variable=False"/> | 431 <has_text_matching expression="copy=False"/> |
| 409 </assert_stdout> | 432 <has_text_matching expression="chunked=True"/> |
| 433 <has_text_matching expression="chunk_size=50"/> | |
| 434 <has_text_matching expression="use_highly_variable=False"/> | |
| 435 </assert_contents> | |
| 436 </output> | |
| 410 <output name="anndata_out" file="pp.pca.krumsiek11_chunk.h5ad" ftype="h5ad" compare="sim_size"/> | 437 <output name="anndata_out" file="pp.pca.krumsiek11_chunk.h5ad" ftype="h5ad" compare="sim_size"/> |
| 411 </test> | 438 </test> |
| 412 --> | 439 <test expect_num_outputs="2"> |
| 413 <test> | 440 <!-- test 5 --> |
| 414 <!-- test 2 --> | |
| 415 <param name="adata" value="krumsiek11.h5ad" /> | 441 <param name="adata" value="krumsiek11.h5ad" /> |
| 416 <conditional name="method"> | 442 <conditional name="method"> |
| 417 <param name="method" value="tl.pca"/> | 443 <param name="method" value="tl.pca"/> |
| 418 <param name="n_comps" value="50"/> | 444 <param name="n_comps" value="50"/> |
| 419 <param name="dtype" value="float32"/> | 445 <param name="dtype" value="float32"/> |
| 439 <has_text_matching expression="use_highly_variable=False"/> | 465 <has_text_matching expression="use_highly_variable=False"/> |
| 440 </assert_contents> | 466 </assert_contents> |
| 441 </output> | 467 </output> |
| 442 <output name="anndata_out" file="tl.pca.krumsiek11.h5ad" ftype="h5ad" compare="sim_size" delta="100000" delta_frac="0.15"/> | 468 <output name="anndata_out" file="tl.pca.krumsiek11.h5ad" ftype="h5ad" compare="sim_size" delta="100000" delta_frac="0.15"/> |
| 443 </test> | 469 </test> |
| 444 <test> | 470 <test expect_num_outputs="2"> |
| 445 <!-- test 3 --> | 471 <!-- test 6 --> |
| 446 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | 472 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> |
| 447 <conditional name="method"> | 473 <conditional name="method"> |
| 448 <param name="method" value="tl.diffmap"/> | 474 <param name="method" value="tl.diffmap"/> |
| 449 <param name="n_comps" value="15"/> | 475 <param name="n_comps" value="15"/> |
| 450 </conditional> | 476 </conditional> |
| 456 <has_text_matching expression="sc.tl.diffmap"/> | 482 <has_text_matching expression="sc.tl.diffmap"/> |
| 457 </assert_contents> | 483 </assert_contents> |
| 458 </output> | 484 </output> |
| 459 <output name="anndata_out" file="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 485 <output name="anndata_out" file="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
| 460 </test> | 486 </test> |
| 461 <test> | 487 <test expect_num_outputs="2"> |
| 462 <!-- test 4 --> | 488 <!-- test 7 --> |
| 463 <param name="adata" value="krumsiek11.h5ad" /> | 489 <param name="adata" value="krumsiek11.h5ad" /> |
| 464 <conditional name="method"> | 490 <conditional name="method"> |
| 465 <param name="method" value="tl.tsne"/> | 491 <param name="method" value="tl.tsne"/> |
| 466 <param name="n_pcs" value="10"/> | 492 <param name="n_pcs" value="10"/> |
| 467 <param name="perplexity" value="30"/> | 493 <param name="perplexity" value="30"/> |
| 484 <has_text_matching expression="use_fast_tsne=True"/> | 510 <has_text_matching expression="use_fast_tsne=True"/> |
| 485 </assert_contents> | 511 </assert_contents> |
| 486 </output> | 512 </output> |
| 487 <output name="anndata_out" file="tl.tsne.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> | 513 <output name="anndata_out" file="tl.tsne.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> |
| 488 </test> | 514 </test> |
| 489 <test> | 515 <test expect_num_outputs="2"> |
| 490 <!-- test 5 --> | 516 <!-- test 8 --> |
| 491 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" /> | 517 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" /> |
| 492 <conditional name="method"> | 518 <conditional name="method"> |
| 493 <param name="method" value="tl.umap"/> | 519 <param name="method" value="tl.umap"/> |
| 494 <param name="min_dist" value="0.5"/> | 520 <param name="min_dist" value="0.5"/> |
| 495 <param name="spread" value="1.0"/> | 521 <param name="spread" value="1.0"/> |
| 522 <assert_contents> | 548 <assert_contents> |
| 523 <has_h5_keys keys="X, obs, obsm, uns, var" /> | 549 <has_h5_keys keys="X, obs, obsm, uns, var" /> |
| 524 </assert_contents> | 550 </assert_contents> |
| 525 </output> | 551 </output> |
| 526 </test> | 552 </test> |
| 527 <test> | 553 <test expect_num_outputs="2"> |
| 528 <!-- test 6 --> | 554 <!-- test 9 --> |
| 529 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad"/> | 555 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad"/> |
| 530 <conditional name="method"> | 556 <conditional name="method"> |
| 531 <param name="method" value="tl.draw_graph"/> | 557 <param name="method" value="tl.draw_graph"/> |
| 532 <param name="layout" value="fa"/> | 558 <param name="layout" value="fa"/> |
| 533 <param name="random_state" value="0"/> | 559 <param name="random_state" value="0"/> |
| 542 <has_text_matching expression="random_state=0"/> | 568 <has_text_matching expression="random_state=0"/> |
| 543 </assert_contents> | 569 </assert_contents> |
| 544 </output> | 570 </output> |
| 545 <output name="anndata_out" file="tl.draw_graph.pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 571 <output name="anndata_out" file="tl.draw_graph.pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
| 546 </test> | 572 </test> |
| 547 <test> | 573 <test expect_num_outputs="2"> |
| 548 <!-- test 7 --> | 574 <!-- test 10 --> |
| 549 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad"/> | 575 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad"/> |
| 550 <conditional name="method"> | 576 <conditional name="method"> |
| 551 <param name="method" value="tl.paga"/> | 577 <param name="method" value="tl.paga"/> |
| 552 <param name="groups" value="paul15_clusters"/> | 578 <param name="groups" value="paul15_clusters"/> |
| 553 <param name="use_rna_velocity" value="False"/> | 579 <param name="use_rna_velocity" value="False"/> |
| 564 <has_text_matching expression="model='v1.2'"/> | 590 <has_text_matching expression="model='v1.2'"/> |
| 565 </assert_contents> | 591 </assert_contents> |
| 566 </output> | 592 </output> |
| 567 <output name="anndata_out" file="tl.paga.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 593 <output name="anndata_out" file="tl.paga.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
| 568 </test> | 594 </test> |
| 569 <test> | 595 <test expect_num_outputs="2"> |
| 570 <!-- test 8 --> | 596 <!-- test 11 --> |
| 571 <param name="adata" value="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | 597 <param name="adata" value="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> |
| 572 <conditional name="method"> | 598 <conditional name="method"> |
| 573 <param name="method" value="tl.dpt"/> | 599 <param name="method" value="tl.dpt"/> |
| 574 <param name="n_dcs" value="15"/> | 600 <param name="n_dcs" value="15"/> |
| 575 <param name="n_branchings" value="1"/> | 601 <param name="n_branchings" value="1"/> |
| 588 <has_text_matching expression="allow_kendall_tau_shift=True"/> | 614 <has_text_matching expression="allow_kendall_tau_shift=True"/> |
| 589 </assert_contents> | 615 </assert_contents> |
| 590 </output> | 616 </output> |
| 591 <output name="anndata_out" file="tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 617 <output name="anndata_out" file="tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
| 592 </test> | 618 </test> |
| 619 <test expect_num_outputs="2"> | |
| 620 <!-- test 12 --> | |
| 621 <param name="adata" value="tl.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" /> | |
| 622 <conditional name="method"> | |
| 623 <param name="method" value="tl.embedding_density"/> | |
| 624 <param name="basis" value="umap"/> | |
| 625 <param name="key_added" value="umap_density"/> | |
| 626 </conditional> | |
| 627 <section name="advanced_common"> | |
| 628 <param name="show_log" value="true" /> | |
| 629 </section> | |
| 630 <output name="hidden_output"> | |
| 631 <assert_contents> | |
| 632 <has_text_matching expression="sc.tl.embedding_density"/> | |
| 633 <has_text_matching expression="basis='umap'"/> | |
| 634 <has_text_matching expression="key_added='umap_density'"/> | |
| 635 </assert_contents> | |
| 636 </output> | |
| 637 <output name="anndata_out" file="tl.embedding_density.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | |
| 638 </test> | |
| 593 </tests> | 639 </tests> |
| 594 <help><![CDATA[ | 640 <help><![CDATA[ |
| 595 Cluster cells into subgroups (`tl.louvain`) | 641 Cluster cells into subgroups (`tl.louvain`) |
| 596 =========================================== | 642 =========================================== |
| 597 | 643 |
| 600 analysis by Levine et al, 2015. | 646 analysis by Levine et al, 2015. |
| 601 | 647 |
| 602 This requires to run `pp.neighbors`, first. | 648 This requires to run `pp.neighbors`, first. |
| 603 | 649 |
| 604 More details on the `tl.louvain scanpy documentation | 650 More details on the `tl.louvain scanpy documentation |
| 605 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.louvain.html>`_ | 651 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.louvain.html>`_ |
| 606 | 652 |
| 607 Cluster cells into subgroups (`tl.leiden`) | 653 Cluster cells into subgroups (`tl.leiden`) |
| 608 ========================================== | 654 ========================================== |
| 609 | 655 |
| 610 Cluster cells using the Leiden algorithm (Traag et al, 2018), an improved version of the Louvain algorithm (Blondel et al, 2008). | 656 Cluster cells using the Leiden algorithm (Traag et al, 2018), an improved version of the Louvain algorithm (Blondel et al, 2008). |
| 611 | 657 |
| 612 The Louvain algorithm has been proposed for single-cell analysis by Levine et al, 2015. | 658 The Louvain algorithm has been proposed for single-cell analysis by Levine et al, 2015. |
| 613 | 659 |
| 614 More details on the `tl.leiden scanpy documentation | 660 More details on the `tl.leiden scanpy documentation |
| 615 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.leiden.html>`_ | 661 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.leiden.html>`_ |
| 616 | 662 |
| 617 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca` | 663 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca` |
| 618 ============================================================================================================ | 664 ============================================================================================================ |
| 619 | 665 |
| 620 @CMD_pca_outputs@ | 666 @CMD_pca_outputs@ |
| 621 | 667 |
| 622 More details on the `pp.pca scanpy documentation | 668 More details on the `pp.pca scanpy documentation |
| 623 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.pp.pca.html>`__ | 669 <https://scanpy.readthedocs.io/en/stable/api/scanpy.pp.pca.html>`__ |
| 624 | 670 |
| 625 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `tl.pca` | 671 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `tl.pca` |
| 626 ============================================================================================================ | 672 ============================================================================================================ |
| 627 | 673 |
| 628 @CMD_pca_outputs@ | 674 @CMD_pca_outputs@ |
| 629 | 675 |
| 630 More details on the `tl.pca scanpy documentation | 676 More details on the `tl.pca scanpy documentation |
| 631 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.pca.html>`__ | 677 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.pca.html>`__ |
| 632 | 678 |
| 633 Diffusion Maps, using `tl.diffmap` | 679 Diffusion Maps, using `tl.diffmap` |
| 634 ================================== | 680 ================================== |
| 635 | 681 |
| 636 Diffusion maps (Coifman et al 2005) has been proposed for visualizing single-cell | 682 Diffusion maps (Coifman et al 2005) has been proposed for visualizing single-cell |
| 643 using a Gaussian kernel, use `method=='gauss'` in | 689 using a Gaussian kernel, use `method=='gauss'` in |
| 644 `pp.neighbors`. To use an exponential kernel, use the default | 690 `pp.neighbors`. To use an exponential kernel, use the default |
| 645 `method=='umap'`. Differences between these options shouldn't usually be | 691 `method=='umap'`. Differences between these options shouldn't usually be |
| 646 dramatic. | 692 dramatic. |
| 647 | 693 |
| 648 The diffusion map representation of data are added to the return AnnData in the multi-dimensional | 694 The diffusion map representation of data are added to the return AnnData in the multi-dimensional |
| 649 observations annotation (obsm). It is the right eigen basis of the transition matrix with eigenvectors | 695 observations annotation (obsm). It is the right eigen basis of the transition matrix with eigenvectors |
| 650 as colum. It can be accessed using the inspect tool for AnnData | 696 as colum. It can be accessed using the inspect tool for AnnData |
| 651 | 697 |
| 652 More details on the `tl.diffmap scanpy documentation | 698 More details on the `tl.diffmap scanpy documentation |
| 653 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.diffmap.html>`__ | 699 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.diffmap.html>`__ |
| 654 | 700 |
| 655 t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne` | 701 t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne` |
| 656 ======================================================================= | 702 ======================================================================= |
| 657 | 703 |
| 658 t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been | 704 t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been |
| 659 proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, | 705 proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, |
| 660 we use the implementation of *scikit-learn* (Pedregosa et al, 2011). | 706 we use the implementation of *scikit-learn* (Pedregosa et al, 2011). |
| 661 | 707 |
| 662 It returns `X_tsne`, tSNE coordinates of data. | 708 It returns `X_tsne`, tSNE coordinates of data. |
| 663 | 709 |
| 664 More details on the `tl.tsne scanpy documentation | 710 More details on the `tl.tsne scanpy documentation |
| 665 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.tsne.html>`__ | 711 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.tsne.html>`__ |
| 666 | 712 |
| 667 Embed the neighborhood graph using UMAP, using `tl.umap` | 713 Embed the neighborhood graph using UMAP, using `tl.umap` |
| 668 ======================================================== | 714 ======================================================== |
| 669 | 715 |
| 670 UMAP (Uniform Manifold Approximation and Projection) is a manifold learning | 716 UMAP (Uniform Manifold Approximation and Projection) is a manifold learning |
| 676 distribution of distances in the high-dimensional space. We use the | 722 distribution of distances in the high-dimensional space. We use the |
| 677 implementation of `umap-learn <https://github.com/lmcinnes/umap>`__ | 723 implementation of `umap-learn <https://github.com/lmcinnes/umap>`__ |
| 678 (McInnes et al, 2018). For a few comparisons of UMAP with tSNE, see this `preprint | 724 (McInnes et al, 2018). For a few comparisons of UMAP with tSNE, see this `preprint |
| 679 <https://doi.org/10.1101/298430>`__. | 725 <https://doi.org/10.1101/298430>`__. |
| 680 | 726 |
| 681 The UMAP coordinates of data are added to the return AnnData in the multi-dimensional | 727 The UMAP coordinates of data are added to the return AnnData in the multi-dimensional |
| 682 observations annotation (obsm). This data is accessible using the inspect tool for AnnData | 728 observations annotation (obsm). This data is accessible using the inspect tool for AnnData |
| 683 | 729 |
| 684 More details on the `tl.umap scanpy documentation | 730 More details on the `tl.umap scanpy documentation |
| 685 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.umap.html>`__ | 731 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.umap.html>`__ |
| 686 | 732 |
| 687 Force-directed graph drawing, using `tl.draw_graph` | 733 Force-directed graph drawing, using `tl.draw_graph` |
| 688 =================================================== | 734 =================================================== |
| 689 | 735 |
| 690 Force-directed graph drawing describes a class of long-established algorithms for visualizing graphs. | 736 Force-directed graph drawing describes a class of long-established algorithms for visualizing graphs. |
| 691 It has been suggested for visualizing single-cell data by Islam et al, 11. | 737 It has been suggested for visualizing single-cell data by Islam et al, 11. |
| 692 Many other layouts as implemented in igraph are available. Similar approaches have been used by | 738 Many other layouts as implemented in igraph are available. Similar approaches have been used by |
| 693 Zunder et al, 2015 or Weinreb et al, 2016. | 739 Zunder et al, 2015 or Weinreb et al, 2016. |
| 694 | 740 |
| 695 This is an alternative to tSNE that often preserves the topology of the data better. | 741 This is an alternative to tSNE that often preserves the topology of the data better. |
| 696 This requires to run `pp.neighbors`, first. | 742 This requires to run `pp.neighbors`, first. |
| 697 | 743 |
| 698 The default layout (ForceAtlas2) uses the package fa2. | 744 The default layout (ForceAtlas2) uses the package fa2. |
| 699 | 745 |
| 700 The coordinates of graph layout are added to the return AnnData in the multi-dimensional | 746 The coordinates of graph layout are added to the return AnnData in the multi-dimensional |
| 701 observations annotation (obsm). This data is accessible using the inspect tool for AnnData. | 747 observations annotation (obsm). This data is accessible using the inspect tool for AnnData. |
| 702 | 748 |
| 703 More details on the `tl.draw_graph scanpy documentation | 749 More details on the `tl.draw_graph scanpy documentation |
| 704 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.draw_graph.html>`__ | 750 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.draw_graph.html>`__ |
| 705 | 751 |
| 706 Infer progression of cells through geodesic distance along the graph (`tl.dpt`) | 752 Infer progression of cells through geodesic distance along the graph (`tl.dpt`) |
| 707 =============================================================================== | 753 =============================================================================== |
| 708 | 754 |
| 709 Reconstruct the progression of a biological process from snapshot | 755 Reconstruct the progression of a biological process from snapshot |
| 712 version, which is able to deal with disconnected graphs (Wolf et al, 2017) and can | 758 version, which is able to deal with disconnected graphs (Wolf et al, 2017) and can |
| 713 be run in a `hierarchical` mode by setting the parameter | 759 be run in a `hierarchical` mode by setting the parameter |
| 714 `n_branchings>1`. We recommend, however, to only use | 760 `n_branchings>1`. We recommend, however, to only use |
| 715 `tl.dpt` for computing pseudotime (`n_branchings=0`) and | 761 `tl.dpt` for computing pseudotime (`n_branchings=0`) and |
| 716 to detect branchings via `paga`. For pseudotime, you need | 762 to detect branchings via `paga`. For pseudotime, you need |
| 717 to annotate your data with a root cell. | 763 to annotate your data with a root cell. |
| 718 | 764 |
| 719 This requires to run `pp.neighbors`, first. In order to | 765 This requires to run `pp.neighbors`, first. In order to |
| 720 reproduce the original implementation of DPT, use `method=='gauss'` in | 766 reproduce the original implementation of DPT, use `method=='gauss'` in |
| 721 this. Using the default `method=='umap'` only leads to minor quantitative | 767 this. Using the default `method=='umap'` only leads to minor quantitative |
| 722 differences, though. | 768 differences, though. |
| 728 - dpt_groups : Array of dim (number of samples) that stores the subgroup id ('0','1', ...) for each cell. The groups typically correspond to 'progenitor cells', 'undecided cells' or 'branches' of a process. | 774 - dpt_groups : Array of dim (number of samples) that stores the subgroup id ('0','1', ...) for each cell. The groups typically correspond to 'progenitor cells', 'undecided cells' or 'branches' of a process. |
| 729 | 775 |
| 730 The tool is similar to the R package `destiny` of Angerer et al (2016). | 776 The tool is similar to the R package `destiny` of Angerer et al (2016). |
| 731 | 777 |
| 732 More details on the `tl.dpt scanpy documentation | 778 More details on the `tl.dpt scanpy documentation |
| 733 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.dpt.html>`_ | 779 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.dpt.html>`_ |
| 734 | 780 |
| 735 | 781 |
| 736 Generate cellular maps of differentiation manifolds with complex topologies (`tl.paga`) | 782 Generate cellular maps of differentiation manifolds with complex topologies (`tl.paga`) |
| 737 ======================================================================================= | 783 ======================================================================================= |
| 738 | 784 |
| 759 - Adjacency matrix of the tree-like subgraph that best explains the topology (connectivities_tree) | 805 - Adjacency matrix of the tree-like subgraph that best explains the topology (connectivities_tree) |
| 760 | 806 |
| 761 These datasets are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects | 807 These datasets are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects |
| 762 | 808 |
| 763 More details on the `tl.paga scanpy documentation | 809 More details on the `tl.paga scanpy documentation |
| 764 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.paga.html>`_ | 810 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.paga.html>`_ |
| 765 ]]></help> | 811 ]]></help> |
| 766 <expand macro="citations"/> | 812 <expand macro="citations"/> |
| 767 </tool> | 813 </tool> |
