comparison cca.xml @ 0:ffcdde989859 draft

Uploaded
author iuc
date Tue, 29 Jul 2014 06:30:45 -0400
parents
children 2e7bc1bb2dbe
comparison
equal deleted inserted replaced
-1:000000000000 0:ffcdde989859
1 <tool id="cca1" name="Canonical Correlation Analysis" version="1.1.0">
2 <description> </description>
3 <expand macro="requirements" />
4 <macros>
5 <import>statistic_tools_macros.xml</import>
6 </macros>
7 <command interpreter="python">
8 cca.py
9 $input1
10 $x_cols
11 $y_cols
12 $x_scale
13 $y_scale
14 $std_scores
15 $out_file1
16 $out_file2
17 </command>
18 <inputs>
19 <param format="tabular" name="input1" type="data" label="Select data" help="Dataset missing? See TIP below."/>
20 <param name="x_cols" label="Select columns containing X variables " type="data_column" data_ref="input1" numerical="True" multiple="true" >
21 <validator type="no_options" message="Please select at least one column."/>
22 </param>
23 <param name="y_cols" label="Select columns containing Y variables " type="data_column" data_ref="input1" numerical="True" multiple="true" >
24 <validator type="no_options" message="Please select at least one column."/>
25 </param>
26 <param name="x_scale" type="select" label="Type of Scaling for X variables" help="Can be used to center and/or scale variables">
27 <option value="none" selected="true">None</option>
28 <option value="center">Center only</option>
29 <option value="scale">Scale only</option>
30 <option value="both">Center and Scale</option>
31 </param>
32 <param name="y_scale" type="select" label="Type of Scaling for Y variables" help="Can be used to center and/or scale variables">
33 <option value="none" selected="true">None</option>
34 <option value="center">Center only</option>
35 <option value="scale">Scale only</option>
36 <option value="both">Center and Scale</option>
37 </param>
38 <param name="std_scores" type="select" label="Report standardized scores?" help="Selecting 'Yes' will rescale scores (and coefficients) to produce scores of unit variance">
39 <option value="no" selected="true">No</option>
40 <option value="yes">Yes</option>
41 </param>
42 </inputs>
43 <outputs>
44 <data format="input" name="out_file1" metadata_source="input1" />
45 <data format="pdf" name="out_file2" />
46 </outputs>
47 <tests>
48 <test>
49 <param name="input1" value="iris.tabular"/>
50 <param name="x_cols" value="3,4"/>
51 <param name="y_cols" value="1,2"/>
52 <param name="x_scale" value="both"/>
53 <param name="y_scale" value="scale"/>
54 <param name="std_scores" value="yes"/>
55 <output name="out_file1" file="cca_out1.tabular"/>
56 <output name="out_file2" file="cca_out2.pdf"/>
57 </test>
58 </tests>
59 <help>
60
61
62 .. class:: infomark
63
64 **TIP:** If your data is not TAB delimited, use *Edit Datasets-&gt;Convert characters*
65
66 -----
67
68 .. class:: infomark
69
70 **What it does**
71
72 This tool uses functions from 'yacca' library from R statistical package to perform Canonical Correlation Analysis (CCA) on the input data.
73 It outputs two files, one containing the summary statistics of the performed CCA, and the other containing helioplots, which display structural loadings of X and Y variables on different canonical components.
74
75 *Carter T. Butts (2009). yacca: Yet Another Canonical Correlation Analysis Package. R package version 1.1.*
76
77 -----
78
79 .. class:: warningmark
80
81 **Note**
82
83 - This tool currently treats all predictor and response variables as continuous numeric variables. Running the tool on categorical variables might result in incorrect results.
84
85 - Rows containing non-numeric (or missing) data in any of the chosen columns will be skipped from the analysis.
86
87 - The summary statistics in the output are described below:
88
89 - correlation: Canonical correlation between the canonical variates (i.e. transformed variables)
90 - F-statistic: F-value obtained from F Test for Canonical Correlations Using Rao's Approximation
91 - p-value: denotes significance of canonical correlations
92 - Coefficients: represent the coefficients of X and Y variables on each canonical variate
93 - Loadings: represent the correlations between the original variables in each set and their respective canonical variates
94 - CrossLoadings: represent the correlations between the original variables in each set and the opposite canonical variates
95
96 </help>
97 </tool>