Mercurial > repos > iuc > limma_voom
comparison test-data/out_rscript.txt @ 4:47cf8073da69 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/limma_voom commit 6a458881c0819b75e55e64b3f494679d43bb9ee8
| author | iuc |
|---|---|
| date | Sun, 29 Apr 2018 17:36:26 -0400 |
| parents | |
| children | ffa5acf8826c |
comparison
equal
deleted
inserted
replaced
| 3:895d310ddb21 | 4:47cf8073da69 |
|---|---|
| 1 # This tool takes in a matrix of feature counts as well as gene annotations and | |
| 2 # outputs a table of top expressions as well as various plots for differential | |
| 3 # expression analysis | |
| 4 # | |
| 5 # ARGS: htmlPath", "R", 1, "character" -Path to html file linking to other outputs | |
| 6 # outPath", "o", 1, "character" -Path to folder to write all output to | |
| 7 # filesPath", "j", 2, "character" -JSON list object if multiple files input | |
| 8 # matrixPath", "m", 2, "character" -Path to count matrix | |
| 9 # factFile", "f", 2, "character" -Path to factor information file | |
| 10 # factInput", "i", 2, "character" -String containing factors if manually input | |
| 11 # annoPath", "a", 2, "character" -Path to input containing gene annotations | |
| 12 # contrastData", "C", 1, "character" -String containing contrasts of interest | |
| 13 # cpmReq", "c", 2, "double" -Float specifying cpm requirement | |
| 14 # cntReq", "z", 2, "integer" -Integer specifying minimum total count requirement | |
| 15 # sampleReq", "s", 2, "integer" -Integer specifying cpm requirement | |
| 16 # normCounts", "x", 0, "logical" -String specifying if normalised counts should be output | |
| 17 # rdaOpt", "r", 0, "logical" -String specifying if RData should be output | |
| 18 # lfcReq", "l", 1, "double" -Float specifying the log-fold-change requirement | |
| 19 # pValReq", "p", 1, "double" -Float specifying the p-value requirement | |
| 20 # pAdjOpt", "d", 1, "character" -String specifying the p-value adjustment method | |
| 21 # normOpt", "n", 1, "character" -String specifying type of normalisation used | |
| 22 # robOpt", "b", 0, "logical" -String specifying if robust options should be used | |
| 23 # trend", "t", 1, "double" -Float for prior.count if limma-trend is used instead of voom | |
| 24 # weightOpt", "w", 0, "logical" -String specifying if voomWithQualityWeights should be used | |
| 25 # | |
| 26 # OUT: | |
| 27 # MDS Plot | |
| 28 # Voom/SA plot | |
| 29 # MD Plot | |
| 30 # Expression Table | |
| 31 # HTML file linking to the ouputs | |
| 32 # Optional: | |
| 33 # Normalised counts Table | |
| 34 # RData file | |
| 35 # | |
| 36 # | |
| 37 # Author: Shian Su - registertonysu@gmail.com - Jan 2014 | |
| 38 # Modified by: Maria Doyle - Jun 2017, Jan 2018 | |
| 39 | |
| 40 # Record starting time | |
| 41 timeStart <- as.character(Sys.time()) | |
| 42 | |
| 43 # Load all required libraries | |
| 44 library(methods, quietly=TRUE, warn.conflicts=FALSE) | |
| 45 library(statmod, quietly=TRUE, warn.conflicts=FALSE) | |
| 46 library(splines, quietly=TRUE, warn.conflicts=FALSE) | |
| 47 library(edgeR, quietly=TRUE, warn.conflicts=FALSE) | |
| 48 library(limma, quietly=TRUE, warn.conflicts=FALSE) | |
| 49 library(scales, quietly=TRUE, warn.conflicts=FALSE) | |
| 50 library(getopt, quietly=TRUE, warn.conflicts=FALSE) | |
| 51 | |
| 52 if (packageVersion("limma") < "3.20.1") { | |
| 53 stop("Please update 'limma' to version >= 3.20.1 to run this tool") | |
| 54 } | |
| 55 | |
| 56 ################################################################################ | |
| 57 ### Function Delcaration | |
| 58 ################################################################################ | |
| 59 # Function to sanitise contrast equations so there are no whitespaces | |
| 60 # surrounding the arithmetic operators, leading or trailing whitespace | |
| 61 sanitiseEquation <- function(equation) { | |
| 62 equation <- gsub(" *[+] *", "+", equation) | |
| 63 equation <- gsub(" *[-] *", "-", equation) | |
| 64 equation <- gsub(" *[/] *", "/", equation) | |
| 65 equation <- gsub(" *[*] *", "*", equation) | |
| 66 equation <- gsub("^\\s+|\\s+$", "", equation) | |
| 67 return(equation) | |
| 68 } | |
| 69 | |
| 70 # Function to sanitise group information | |
| 71 sanitiseGroups <- function(string) { | |
| 72 string <- gsub(" *[,] *", ",", string) | |
| 73 string <- gsub("^\\s+|\\s+$", "", string) | |
| 74 return(string) | |
| 75 } | |
| 76 | |
| 77 # Function to change periods to whitespace in a string | |
| 78 unmake.names <- function(string) { | |
| 79 string <- gsub(".", " ", string, fixed=TRUE) | |
| 80 return(string) | |
| 81 } | |
| 82 | |
| 83 # Generate output folder and paths | |
| 84 makeOut <- function(filename) { | |
| 85 return(paste0(opt$outPath, "/", filename)) | |
| 86 } | |
| 87 | |
| 88 # Generating design information | |
| 89 pasteListName <- function(string) { | |
| 90 return(paste0("factors$", string)) | |
| 91 } | |
| 92 | |
| 93 # Create cata function: default path set, default seperator empty and appending | |
| 94 # true by default (Ripped straight from the cat function with altered argument | |
| 95 # defaults) | |
| 96 cata <- function(..., file = opt$htmlPath, sep = "", fill = FALSE, labels = NULL, | |
| 97 append = TRUE) { | |
| 98 if (is.character(file)) | |
| 99 if (file == "") | |
| 100 file <- stdout() | |
| 101 else if (substring(file, 1L, 1L) == "|") { | |
| 102 file <- pipe(substring(file, 2L), "w") | |
| 103 on.exit(close(file)) | |
| 104 } | |
| 105 else { | |
| 106 file <- file(file, ifelse(append, "a", "w")) | |
| 107 on.exit(close(file)) | |
| 108 } | |
| 109 .Internal(cat(list(...), file, sep, fill, labels, append)) | |
| 110 } | |
| 111 | |
| 112 # Function to write code for html head and title | |
| 113 HtmlHead <- function(title) { | |
| 114 cata("<head>\n") | |
| 115 cata("<title>", title, "</title>\n") | |
| 116 cata("</head>\n") | |
| 117 } | |
| 118 | |
| 119 # Function to write code for html links | |
| 120 HtmlLink <- function(address, label=address) { | |
| 121 cata("<a href=\"", address, "\" target=\"_blank\">", label, "</a><br />\n") | |
| 122 } | |
| 123 | |
| 124 # Function to write code for html images | |
| 125 HtmlImage <- function(source, label=source, height=600, width=600) { | |
| 126 cata("<img src=\"", source, "\" alt=\"", label, "\" height=\"", height) | |
| 127 cata("\" width=\"", width, "\"/>\n") | |
| 128 } | |
| 129 | |
| 130 # Function to write code for html list items | |
| 131 ListItem <- function(...) { | |
| 132 cata("<li>", ..., "</li>\n") | |
| 133 } | |
| 134 | |
| 135 TableItem <- function(...) { | |
| 136 cata("<td>", ..., "</td>\n") | |
| 137 } | |
| 138 | |
| 139 TableHeadItem <- function(...) { | |
| 140 cata("<th>", ..., "</th>\n") | |
| 141 } | |
| 142 | |
| 143 ################################################################################ | |
| 144 ### Input Processing | |
| 145 ################################################################################ | |
| 146 | |
| 147 # Collect arguments from command line | |
| 148 args <- commandArgs(trailingOnly=TRUE) | |
| 149 | |
| 150 # Get options, using the spec as defined by the enclosed list. | |
| 151 # Read the options from the default: commandArgs(TRUE). | |
| 152 spec <- matrix(c( | |
| 153 "htmlPath", "R", 1, "character", | |
| 154 "outPath", "o", 1, "character", | |
| 155 "filesPath", "j", 2, "character", | |
| 156 "matrixPath", "m", 2, "character", | |
| 157 "factFile", "f", 2, "character", | |
| 158 "factInput", "i", 2, "character", | |
| 159 "annoPath", "a", 2, "character", | |
| 160 "contrastData", "C", 1, "character", | |
| 161 "cpmReq", "c", 1, "double", | |
| 162 "totReq", "y", 0, "logical", | |
| 163 "cntReq", "z", 1, "integer", | |
| 164 "sampleReq", "s", 1, "integer", | |
| 165 "normCounts", "x", 0, "logical", | |
| 166 "rdaOpt", "r", 0, "logical", | |
| 167 "lfcReq", "l", 1, "double", | |
| 168 "pValReq", "p", 1, "double", | |
| 169 "pAdjOpt", "d", 1, "character", | |
| 170 "normOpt", "n", 1, "character", | |
| 171 "robOpt", "b", 0, "logical", | |
| 172 "trend", "t", 1, "double", | |
| 173 "weightOpt", "w", 0, "logical"), | |
| 174 byrow=TRUE, ncol=4) | |
| 175 opt <- getopt(spec) | |
| 176 | |
| 177 | |
| 178 if (is.null(opt$matrixPath) & is.null(opt$filesPath)) { | |
| 179 cat("A counts matrix (or a set of counts files) is required.\n") | |
| 180 q(status=1) | |
| 181 } | |
| 182 | |
| 183 if (is.null(opt$cpmReq)) { | |
| 184 filtCPM <- FALSE | |
| 185 } else { | |
| 186 filtCPM <- TRUE | |
| 187 } | |
| 188 | |
| 189 if (is.null(opt$cntReq) || is.null(opt$sampleReq)) { | |
| 190 filtSmpCount <- FALSE | |
| 191 } else { | |
| 192 filtSmpCount <- TRUE | |
| 193 } | |
| 194 | |
| 195 if (is.null(opt$totReq)) { | |
| 196 filtTotCount <- FALSE | |
| 197 } else { | |
| 198 filtTotCount <- TRUE | |
| 199 } | |
| 200 | |
| 201 if (is.null(opt$rdaOpt)) { | |
| 202 wantRda <- FALSE | |
| 203 } else { | |
| 204 wantRda <- TRUE | |
| 205 } | |
| 206 | |
| 207 if (is.null(opt$annoPath)) { | |
| 208 haveAnno <- FALSE | |
| 209 } else { | |
| 210 haveAnno <- TRUE | |
| 211 } | |
| 212 | |
| 213 if (is.null(opt$normCounts)) { | |
| 214 wantNorm <- FALSE | |
| 215 } else { | |
| 216 wantNorm <- TRUE | |
| 217 } | |
| 218 | |
| 219 if (is.null(opt$robOpt)) { | |
| 220 wantRobust <- FALSE | |
| 221 } else { | |
| 222 wantRobust <- TRUE | |
| 223 } | |
| 224 | |
| 225 if (is.null(opt$weightOpt)) { | |
| 226 wantWeight <- FALSE | |
| 227 } else { | |
| 228 wantWeight <- TRUE | |
| 229 } | |
| 230 | |
| 231 if (is.null(opt$trend)) { | |
| 232 wantTrend <- FALSE | |
| 233 deMethod <- "limma-voom" | |
| 234 } else { | |
| 235 wantTrend <- TRUE | |
| 236 deMethod <- "limma-trend" | |
| 237 priorCount <- opt$trend | |
| 238 } | |
| 239 | |
| 240 | |
| 241 if (!is.null(opt$filesPath)) { | |
| 242 # Process the separate count files (adapted from DESeq2 wrapper) | |
| 243 library("rjson") | |
| 244 parser <- newJSONParser() | |
| 245 parser$addData(opt$filesPath) | |
| 246 factorList <- parser$getObject() | |
| 247 factors <- sapply(factorList, function(x) x[[1]]) | |
| 248 filenamesIn <- unname(unlist(factorList[[1]][[2]])) | |
| 249 sampleTable <- data.frame(sample=basename(filenamesIn), | |
| 250 filename=filenamesIn, | |
| 251 row.names=filenamesIn, | |
| 252 stringsAsFactors=FALSE) | |
| 253 for (factor in factorList) { | |
| 254 factorName <- factor[[1]] | |
| 255 sampleTable[[factorName]] <- character(nrow(sampleTable)) | |
| 256 lvls <- sapply(factor[[2]], function(x) names(x)) | |
| 257 for (i in seq_along(factor[[2]])) { | |
| 258 files <- factor[[2]][[i]][[1]] | |
| 259 sampleTable[files,factorName] <- lvls[i] | |
| 260 } | |
| 261 sampleTable[[factorName]] <- factor(sampleTable[[factorName]], levels=lvls) | |
| 262 } | |
| 263 rownames(sampleTable) <- sampleTable$sample | |
| 264 rem <- c("sample","filename") | |
| 265 factors <- sampleTable[, !(names(sampleTable) %in% rem), drop=FALSE] | |
| 266 | |
| 267 #read in count files and create single table | |
| 268 countfiles <- lapply(sampleTable$filename, function(x){read.delim(x, row.names=1)}) | |
| 269 counts <- do.call("cbind", countfiles) | |
| 270 | |
| 271 } else { | |
| 272 # Process the single count matrix | |
| 273 counts <- read.table(opt$matrixPath, header=TRUE, sep="\t", stringsAsFactors=FALSE) | |
| 274 row.names(counts) <- counts[, 1] | |
| 275 counts <- counts[ , -1] | |
| 276 countsRows <- nrow(counts) | |
| 277 | |
| 278 # Process factors | |
| 279 if (is.null(opt$factInput)) { | |
| 280 factorData <- read.table(opt$factFile, header=TRUE, sep="\t") | |
| 281 factors <- factorData[, -1, drop=FALSE] | |
| 282 } else { | |
| 283 factors <- unlist(strsplit(opt$factInput, "|", fixed=TRUE)) | |
| 284 factorData <- list() | |
| 285 for (fact in factors) { | |
| 286 newFact <- unlist(strsplit(fact, split="::")) | |
| 287 factorData <- rbind(factorData, newFact) | |
| 288 } # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... The first factor is the Primary Factor. | |
| 289 | |
| 290 # Set the row names to be the name of the factor and delete first row | |
| 291 row.names(factorData) <- factorData[, 1] | |
| 292 factorData <- factorData[, -1] | |
| 293 factorData <- sapply(factorData, sanitiseGroups) | |
| 294 factorData <- sapply(factorData, strsplit, split=",") | |
| 295 factorData <- sapply(factorData, make.names) | |
| 296 # Transform factor data into data frame of R factor objects | |
| 297 factors <- data.frame(factorData) | |
| 298 } | |
| 299 } | |
| 300 | |
| 301 # if annotation file provided | |
| 302 if (haveAnno) { | |
| 303 geneanno <- read.table(opt$annoPath, header=TRUE, sep="\t", stringsAsFactors=FALSE) | |
| 304 } | |
| 305 | |
| 306 #Create output directory | |
| 307 dir.create(opt$outPath, showWarnings=FALSE) | |
| 308 | |
| 309 # Split up contrasts seperated by comma into a vector then sanitise | |
| 310 contrastData <- unlist(strsplit(opt$contrastData, split=",")) | |
| 311 contrastData <- sanitiseEquation(contrastData) | |
| 312 contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) | |
| 313 | |
| 314 | |
| 315 mdsOutPdf <- makeOut("mdsplot_nonorm.pdf") | |
| 316 mdsOutPng <- makeOut("mdsplot_nonorm.png") | |
| 317 nmdsOutPdf <- makeOut("mdsplot.pdf") | |
| 318 nmdsOutPng <- makeOut("mdsplot.png") | |
| 319 maOutPdf <- character() # Initialise character vector | |
| 320 maOutPng <- character() | |
| 321 topOut <- character() | |
| 322 for (i in 1:length(contrastData)) { | |
| 323 maOutPdf[i] <- makeOut(paste0("maplot_", contrastData[i], ".pdf")) | |
| 324 maOutPng[i] <- makeOut(paste0("maplot_", contrastData[i], ".png")) | |
| 325 topOut[i] <- makeOut(paste0(deMethod, "_", contrastData[i], ".tsv")) | |
| 326 } | |
| 327 normOut <- makeOut(paste0(deMethod, "_normcounts.tsv")) | |
| 328 rdaOut <- makeOut(paste0(deMethod, "_analysis.RData")) | |
| 329 sessionOut <- makeOut("session_info.txt") | |
| 330 | |
| 331 # Initialise data for html links and images, data frame with columns Label and | |
| 332 # Link | |
| 333 linkData <- data.frame(Label=character(), Link=character(), | |
| 334 stringsAsFactors=FALSE) | |
| 335 imageData <- data.frame(Label=character(), Link=character(), | |
| 336 stringsAsFactors=FALSE) | |
| 337 | |
| 338 # Initialise vectors for storage of up/down/neutral regulated counts | |
| 339 upCount <- numeric() | |
| 340 downCount <- numeric() | |
| 341 flatCount <- numeric() | |
| 342 | |
| 343 ################################################################################ | |
| 344 ### Data Processing | |
| 345 ################################################################################ | |
| 346 | |
| 347 # Extract counts and annotation data | |
| 348 print("Extracting counts") | |
| 349 data <- list() | |
| 350 data$counts <- counts | |
| 351 if (haveAnno) { | |
| 352 # order annotation by genes in counts (assumes gene ids are in 1st column of geneanno) | |
| 353 annoord <- geneanno[match(row.names(counts), geneanno[,1]), ] | |
| 354 data$genes <- annoord | |
| 355 } else { | |
| 356 data$genes <- data.frame(GeneID=row.names(counts)) | |
| 357 } | |
| 358 | |
| 359 # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of | |
| 360 # samples. Default is no filtering | |
| 361 preFilterCount <- nrow(data$counts) | |
| 362 | |
| 363 if (filtCPM || filtSmpCount || filtTotCount) { | |
| 364 | |
| 365 if (filtTotCount) { | |
| 366 keep <- rowSums(data$counts) >= opt$cntReq | |
| 367 } else if (filtSmpCount) { | |
| 368 keep <- rowSums(data$counts >= opt$cntReq) >= opt$sampleReq | |
| 369 } else if (filtCPM) { | |
| 370 keep <- rowSums(cpm(data$counts) >= opt$cpmReq) >= opt$sampleReq | |
| 371 } | |
| 372 | |
| 373 data$counts <- data$counts[keep, ] | |
| 374 data$genes <- data$genes[keep, , drop=FALSE] | |
| 375 } | |
| 376 | |
| 377 postFilterCount <- nrow(data$counts) | |
| 378 filteredCount <- preFilterCount-postFilterCount | |
| 379 | |
| 380 # Creating naming data | |
| 381 samplenames <- colnames(data$counts) | |
| 382 sampleanno <- data.frame("sampleID"=samplenames, factors) | |
| 383 | |
| 384 | |
| 385 # Generating the DGEList object "data" | |
| 386 print("Generating DGEList object") | |
| 387 data$samples <- sampleanno | |
| 388 data$samples$lib.size <- colSums(data$counts) | |
| 389 data$samples$norm.factors <- 1 | |
| 390 row.names(data$samples) <- colnames(data$counts) | |
| 391 data <- new("DGEList", data) | |
| 392 | |
| 393 print("Generating Design") | |
| 394 # Name rows of factors according to their sample | |
| 395 row.names(factors) <- names(data$counts) | |
| 396 factorList <- sapply(names(factors), pasteListName) | |
| 397 formula <- "~0" | |
| 398 for (i in 1:length(factorList)) { | |
| 399 formula <- paste(formula,factorList[i], sep="+") | |
| 400 } | |
| 401 formula <- formula(formula) | |
| 402 design <- model.matrix(formula) | |
| 403 for (i in 1:length(factorList)) { | |
| 404 colnames(design) <- gsub(factorList[i], "", colnames(design), fixed=TRUE) | |
| 405 } | |
| 406 | |
| 407 # Calculating normalising factors | |
| 408 print("Calculating Normalisation Factors") | |
| 409 data <- calcNormFactors(data, method=opt$normOpt) | |
| 410 | |
| 411 # Generate contrasts information | |
| 412 print("Generating Contrasts") | |
| 413 contrasts <- makeContrasts(contrasts=contrastData, levels=design) | |
| 414 | |
| 415 ################################################################################ | |
| 416 ### Data Output | |
| 417 ################################################################################ | |
| 418 # Plot MDS | |
| 419 print("Generating MDS plot") | |
| 420 labels <- names(counts) | |
| 421 png(mdsOutPng, width=600, height=600) | |
| 422 # Currently only using a single factor | |
| 423 plotMDS(data, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main="MDS Plot (unnormalised)") | |
| 424 imageData[1, ] <- c("MDS Plot (unnormalised)", "mdsplot_nonorm.png") | |
| 425 invisible(dev.off()) | |
| 426 | |
| 427 pdf(mdsOutPdf) | |
| 428 plotMDS(data, labels=labels, cex=0.5) | |
| 429 linkData[1, ] <- c("MDS Plot (unnormalised).pdf", "mdsplot_nonorm.pdf") | |
| 430 invisible(dev.off()) | |
| 431 | |
| 432 if (wantTrend) { | |
| 433 # limma-trend approach | |
| 434 logCPM <- cpm(data, log=TRUE, prior.count=opt$trend) | |
| 435 fit <- lmFit(logCPM, design) | |
| 436 fit$genes <- data$genes | |
| 437 fit <- contrasts.fit(fit, contrasts) | |
| 438 if (wantRobust) { | |
| 439 fit <- eBayes(fit, trend=TRUE, robust=TRUE) | |
| 440 } else { | |
| 441 fit <- eBayes(fit, trend=TRUE, robust=FALSE) | |
| 442 } | |
| 443 # plot fit with plotSA | |
| 444 saOutPng <- makeOut("saplot.png") | |
| 445 saOutPdf <- makeOut("saplot.pdf") | |
| 446 | |
| 447 png(saOutPng, width=600, height=600) | |
| 448 plotSA(fit, main="SA Plot") | |
| 449 imgName <- "SA Plot.png" | |
| 450 imgAddr <- "saplot.png" | |
| 451 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
| 452 invisible(dev.off()) | |
| 453 | |
| 454 pdf(saOutPdf, width=14) | |
| 455 plotSA(fit, main="SA Plot") | |
| 456 linkName <- paste0("SA Plot.pdf") | |
| 457 linkAddr <- paste0("saplot.pdf") | |
| 458 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
| 459 invisible(dev.off()) | |
| 460 | |
| 461 plotData <- logCPM | |
| 462 | |
| 463 # Save normalised counts (log2cpm) | |
| 464 if (wantNorm) { | |
| 465 write.table(logCPM, file=normOut, row.names=TRUE, sep="\t", quote=FALSE) | |
| 466 linkData <- rbind(linkData, c((paste0(deMethod, "_", "normcounts.tsv")), (paste0(deMethod, "_", "normcounts.tsv")))) | |
| 467 } | |
| 468 } else { | |
| 469 # limma-voom approach | |
| 470 voomOutPdf <- makeOut("voomplot.pdf") | |
| 471 voomOutPng <- makeOut("voomplot.png") | |
| 472 | |
| 473 if (wantWeight) { | |
| 474 # Creating voom data object and plot | |
| 475 png(voomOutPng, width=1000, height=600) | |
| 476 vData <- voomWithQualityWeights(data, design=design, plot=TRUE) | |
| 477 imgName <- "Voom Plot.png" | |
| 478 imgAddr <- "voomplot.png" | |
| 479 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
| 480 invisible(dev.off()) | |
| 481 | |
| 482 pdf(voomOutPdf, width=14) | |
| 483 vData <- voomWithQualityWeights(data, design=design, plot=TRUE) | |
| 484 linkName <- paste0("Voom Plot.pdf") | |
| 485 linkAddr <- paste0("voomplot.pdf") | |
| 486 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
| 487 invisible(dev.off()) | |
| 488 | |
| 489 # Generating fit data and top table with weights | |
| 490 wts <- vData$weights | |
| 491 voomFit <- lmFit(vData, design, weights=wts) | |
| 492 | |
| 493 } else { | |
| 494 # Creating voom data object and plot | |
| 495 png(voomOutPng, width=600, height=600) | |
| 496 vData <- voom(data, design=design, plot=TRUE) | |
| 497 imgName <- "Voom Plot" | |
| 498 imgAddr <- "voomplot.png" | |
| 499 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
| 500 invisible(dev.off()) | |
| 501 | |
| 502 pdf(voomOutPdf) | |
| 503 vData <- voom(data, design=design, plot=TRUE) | |
| 504 linkName <- paste0("Voom Plot.pdf") | |
| 505 linkAddr <- paste0("voomplot.pdf") | |
| 506 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
| 507 invisible(dev.off()) | |
| 508 | |
| 509 # Generate voom fit | |
| 510 voomFit <- lmFit(vData, design) | |
| 511 } | |
| 512 | |
| 513 # Save normalised counts (log2cpm) | |
| 514 if (wantNorm) { | |
| 515 norm_counts <- data.frame(vData$genes, vData$E) | |
| 516 write.table(norm_counts, file=normOut, row.names=FALSE, sep="\t", quote=FALSE) | |
| 517 linkData <- rbind(linkData, c((paste0(deMethod, "_", "normcounts.tsv")), (paste0(deMethod, "_", "normcounts.tsv")))) | |
| 518 } | |
| 519 | |
| 520 # Fit linear model and estimate dispersion with eBayes | |
| 521 voomFit <- contrasts.fit(voomFit, contrasts) | |
| 522 if (wantRobust) { | |
| 523 fit <- eBayes(voomFit, robust=TRUE) | |
| 524 } else { | |
| 525 fit <- eBayes(voomFit, robust=FALSE) | |
| 526 } | |
| 527 plotData <- vData | |
| 528 } | |
| 529 | |
| 530 print("Generating normalised MDS plot") | |
| 531 png(nmdsOutPng, width=600, height=600) | |
| 532 # Currently only using a single factor | |
| 533 plotMDS(plotData, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main="MDS Plot (normalised)") | |
| 534 imgName <- "MDS Plot (normalised)" | |
| 535 imgAddr <- "mdsplot.png" | |
| 536 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
| 537 invisible(dev.off()) | |
| 538 | |
| 539 pdf(nmdsOutPdf) | |
| 540 plotMDS(plotData, labels=labels, cex=0.5) | |
| 541 linkName <- paste0("MDS Plot (normalised).pdf") | |
| 542 linkAddr <- paste0("mdsplot.pdf") | |
| 543 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
| 544 invisible(dev.off()) | |
| 545 | |
| 546 | |
| 547 print("Generating DE results") | |
| 548 status = decideTests(fit, adjust.method=opt$pAdjOpt, p.value=opt$pValReq, | |
| 549 lfc=opt$lfcReq) | |
| 550 sumStatus <- summary(status) | |
| 551 | |
| 552 for (i in 1:length(contrastData)) { | |
| 553 # Collect counts for differential expression | |
| 554 upCount[i] <- sumStatus["Up", i] | |
| 555 downCount[i] <- sumStatus["Down", i] | |
| 556 flatCount[i] <- sumStatus["NotSig", i] | |
| 557 | |
| 558 # Write top expressions table | |
| 559 top <- topTable(fit, coef=i, number=Inf, sort.by="P") | |
| 560 write.table(top, file=topOut[i], row.names=FALSE, sep="\t", quote=FALSE) | |
| 561 | |
| 562 linkName <- paste0(deMethod, "_", contrastData[i], ".tsv") | |
| 563 linkAddr <- paste0(deMethod, "_", contrastData[i], ".tsv") | |
| 564 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
| 565 | |
| 566 # Plot MA (log ratios vs mean average) using limma package on weighted | |
| 567 pdf(maOutPdf[i]) | |
| 568 limma::plotMD(fit, status=status, coef=i, | |
| 569 main=paste("MA Plot:", unmake.names(contrastData[i])), | |
| 570 col=alpha(c("firebrick", "blue"), 0.4), values=c("1", "-1"), | |
| 571 xlab="Average Expression", ylab="logFC") | |
| 572 | |
| 573 abline(h=0, col="grey", lty=2) | |
| 574 | |
| 575 linkName <- paste0("MA Plot_", contrastData[i], " (.pdf)") | |
| 576 linkAddr <- paste0("maplot_", contrastData[i], ".pdf") | |
| 577 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
| 578 invisible(dev.off()) | |
| 579 | |
| 580 png(maOutPng[i], height=600, width=600) | |
| 581 limma::plotMD(fit, status=status, coef=i, | |
| 582 main=paste("MA Plot:", unmake.names(contrastData[i])), | |
| 583 col=alpha(c("firebrick", "blue"), 0.4), values=c("1", "-1"), | |
| 584 xlab="Average Expression", ylab="logFC") | |
| 585 | |
| 586 abline(h=0, col="grey", lty=2) | |
| 587 | |
| 588 imgName <- paste0("MA Plot_", contrastData[i]) | |
| 589 imgAddr <- paste0("maplot_", contrastData[i], ".png") | |
| 590 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
| 591 invisible(dev.off()) | |
| 592 } | |
| 593 sigDiff <- data.frame(Up=upCount, Flat=flatCount, Down=downCount) | |
| 594 row.names(sigDiff) <- contrastData | |
| 595 | |
| 596 # Save relevant items as rda object | |
| 597 if (wantRda) { | |
| 598 print("Saving RData") | |
| 599 if (wantWeight) { | |
| 600 save(data, status, plotData, labels, factors, wts, fit, top, contrasts, | |
| 601 design, | |
| 602 file=rdaOut, ascii=TRUE) | |
| 603 } else { | |
| 604 save(data, status, plotData, labels, factors, fit, top, contrasts, design, | |
| 605 file=rdaOut, ascii=TRUE) | |
| 606 } | |
| 607 linkData <- rbind(linkData, c((paste0(deMethod, "_analysis.RData")), (paste0(deMethod, "_analysis.RData")))) | |
| 608 } | |
| 609 | |
| 610 # Record session info | |
| 611 writeLines(capture.output(sessionInfo()), sessionOut) | |
| 612 linkData <- rbind(linkData, c("Session Info", "session_info.txt")) | |
| 613 | |
| 614 # Record ending time and calculate total run time | |
| 615 timeEnd <- as.character(Sys.time()) | |
| 616 timeTaken <- capture.output(round(difftime(timeEnd,timeStart), digits=3)) | |
| 617 timeTaken <- gsub("Time difference of ", "", timeTaken, fixed=TRUE) | |
| 618 ################################################################################ | |
| 619 ### HTML Generation | |
| 620 ################################################################################ | |
| 621 | |
| 622 # Clear file | |
| 623 cat("", file=opt$htmlPath) | |
| 624 | |
| 625 cata("<html>\n") | |
| 626 | |
| 627 cata("<body>\n") | |
| 628 cata("<h3>Limma Analysis Output:</h3>\n") | |
| 629 cata("Links to PDF copies of plots are in 'Plots' section below />\n") | |
| 630 if (wantWeight) { | |
| 631 HtmlImage(imageData$Link[1], imageData$Label[1], width=1000) | |
| 632 } else { | |
| 633 HtmlImage(imageData$Link[1], imageData$Label[1]) | |
| 634 } | |
| 635 | |
| 636 for (i in 2:nrow(imageData)) { | |
| 637 HtmlImage(imageData$Link[i], imageData$Label[i]) | |
| 638 } | |
| 639 | |
| 640 cata("<h4>Differential Expression Counts:</h4>\n") | |
| 641 | |
| 642 cata("<table border=\"1\" cellpadding=\"4\">\n") | |
| 643 cata("<tr>\n") | |
| 644 TableItem() | |
| 645 for (i in colnames(sigDiff)) { | |
| 646 TableHeadItem(i) | |
| 647 } | |
| 648 cata("</tr>\n") | |
| 649 for (i in 1:nrow(sigDiff)) { | |
| 650 cata("<tr>\n") | |
| 651 TableHeadItem(unmake.names(row.names(sigDiff)[i])) | |
| 652 for (j in 1:ncol(sigDiff)) { | |
| 653 TableItem(as.character(sigDiff[i, j])) | |
| 654 } | |
| 655 cata("</tr>\n") | |
| 656 } | |
| 657 cata("</table>") | |
| 658 | |
| 659 cata("<h4>Plots:</h4>\n") | |
| 660 for (i in 1:nrow(linkData)) { | |
| 661 if (grepl(".pdf", linkData$Link[i])) { | |
| 662 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
| 663 } | |
| 664 } | |
| 665 | |
| 666 cata("<h4>Tables:</h4>\n") | |
| 667 for (i in 1:nrow(linkData)) { | |
| 668 if (grepl(".tsv", linkData$Link[i])) { | |
| 669 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
| 670 } | |
| 671 } | |
| 672 | |
| 673 if (wantRda) { | |
| 674 cata("<h4>R Data Object:</h4>\n") | |
| 675 for (i in 1:nrow(linkData)) { | |
| 676 if (grepl(".RData", linkData$Link[i])) { | |
| 677 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
| 678 } | |
| 679 } | |
| 680 } | |
| 681 | |
| 682 cata("<p>Alt-click links to download file.</p>\n") | |
| 683 cata("<p>Click floppy disc icon associated history item to download ") | |
| 684 cata("all files.</p>\n") | |
| 685 cata("<p>.tsv files can be viewed in Excel or any spreadsheet program.</p>\n") | |
| 686 | |
| 687 cata("<h4>Additional Information</h4>\n") | |
| 688 cata("<ul>\n") | |
| 689 | |
| 690 if (filtCPM || filtSmpCount || filtTotCount) { | |
| 691 if (filtCPM) { | |
| 692 tempStr <- paste("Genes without more than", opt$cmpReq, | |
| 693 "CPM in at least", opt$sampleReq, "samples are insignificant", | |
| 694 "and filtered out.") | |
| 695 } else if (filtSmpCount) { | |
| 696 tempStr <- paste("Genes without more than", opt$cntReq, | |
| 697 "counts in at least", opt$sampleReq, "samples are insignificant", | |
| 698 "and filtered out.") | |
| 699 } else if (filtTotCount) { | |
| 700 tempStr <- paste("Genes without more than", opt$cntReq, | |
| 701 "counts, after summing counts for all samples, are insignificant", | |
| 702 "and filtered out.") | |
| 703 } | |
| 704 | |
| 705 ListItem(tempStr) | |
| 706 filterProp <- round(filteredCount/preFilterCount*100, digits=2) | |
| 707 tempStr <- paste0(filteredCount, " of ", preFilterCount," (", filterProp, | |
| 708 "%) genes were filtered out for low expression.") | |
| 709 ListItem(tempStr) | |
| 710 } | |
| 711 ListItem(opt$normOpt, " was the method used to normalise library sizes.") | |
| 712 if (wantTrend) { | |
| 713 ListItem("The limma-trend method was used.") | |
| 714 } else { | |
| 715 ListItem("The limma-voom method was used.") | |
| 716 } | |
| 717 if (wantWeight) { | |
| 718 ListItem("Weights were applied to samples.") | |
| 719 } else { | |
| 720 ListItem("Weights were not applied to samples.") | |
| 721 } | |
| 722 if (wantRobust) { | |
| 723 ListItem("eBayes was used with robust settings (robust=TRUE).") | |
| 724 } | |
| 725 if (opt$pAdjOpt!="none") { | |
| 726 if (opt$pAdjOpt=="BH" || opt$pAdjOpt=="BY") { | |
| 727 tempStr <- paste0("MA-Plot highlighted genes are significant at FDR ", | |
| 728 "of ", opt$pValReq," and exhibit log2-fold-change of at ", | |
| 729 "least ", opt$lfcReq, ".") | |
| 730 ListItem(tempStr) | |
| 731 } else if (opt$pAdjOpt=="holm") { | |
| 732 tempStr <- paste0("MA-Plot highlighted genes are significant at adjusted ", | |
| 733 "p-value of ", opt$pValReq," by the Holm(1979) ", | |
| 734 "method, and exhibit log2-fold-change of at least ", | |
| 735 opt$lfcReq, ".") | |
| 736 ListItem(tempStr) | |
| 737 } | |
| 738 } else { | |
| 739 tempStr <- paste0("MA-Plot highlighted genes are significant at p-value ", | |
| 740 "of ", opt$pValReq," and exhibit log2-fold-change of at ", | |
| 741 "least ", opt$lfcReq, ".") | |
| 742 ListItem(tempStr) | |
| 743 } | |
| 744 cata("</ul>\n") | |
| 745 | |
| 746 cata("<h4>Summary of experimental data:</h4>\n") | |
| 747 | |
| 748 cata("<p>*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP(S)*</p>\n") | |
| 749 | |
| 750 cata("<table border=\"1\" cellpadding=\"3\">\n") | |
| 751 cata("<tr>\n") | |
| 752 TableHeadItem("SampleID") | |
| 753 TableHeadItem(names(factors)[1]," (Primary Factor)") | |
| 754 | |
| 755 if (ncol(factors) > 1) { | |
| 756 for (i in names(factors)[2:length(names(factors))]) { | |
| 757 TableHeadItem(i) | |
| 758 } | |
| 759 cata("</tr>\n") | |
| 760 } | |
| 761 | |
| 762 for (i in 1:nrow(factors)) { | |
| 763 cata("<tr>\n") | |
| 764 TableHeadItem(row.names(factors)[i]) | |
| 765 for (j in 1:ncol(factors)) { | |
| 766 TableItem(as.character(unmake.names(factors[i, j]))) | |
| 767 } | |
| 768 cata("</tr>\n") | |
| 769 } | |
| 770 cata("</table>") | |
| 771 | |
| 772 cit <- character() | |
| 773 link <- character() | |
| 774 link[1] <- paste0("<a href=\"", | |
| 775 "http://www.bioconductor.org/packages/release/bioc/", | |
| 776 "vignettes/limma/inst/doc/usersguide.pdf", | |
| 777 "\">", "limma User's Guide", "</a>.") | |
| 778 | |
| 779 link[2] <- paste0("<a href=\"", | |
| 780 "http://www.bioconductor.org/packages/release/bioc/", | |
| 781 "vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf", | |
| 782 "\">", "edgeR User's Guide", "</a>") | |
| 783 | |
| 784 cit[1] <- paste("Please cite the following paper for this tool:") | |
| 785 | |
| 786 cit[2] <- paste("Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, Blewitt ME,", | |
| 787 "Asselin-Labat ML, Smyth GK, Ritchie ME (2015). Why weight? ", | |
| 788 "Modelling sample and observational level variability improves power ", | |
| 789 "in RNA-seq analyses. Nucleic Acids Research, 43(15), e97.") | |
| 790 | |
| 791 cit[3] <- paste("Please cite the paper below for the limma software itself.", | |
| 792 "Please also try to cite the appropriate methodology articles", | |
| 793 "that describe the statistical methods implemented in limma,", | |
| 794 "depending on which limma functions you are using. The", | |
| 795 "methodology articles are listed in Section 2.1 of the", | |
| 796 link[1], | |
| 797 "Cite no. 3 only if sample weights were used.") | |
| 798 cit[4] <- paste("Smyth GK (2005). Limma: linear models for microarray data.", | |
| 799 "In: 'Bioinformatics and Computational Biology Solutions using", | |
| 800 "R and Bioconductor'. R. Gentleman, V. Carey, S. doit,.", | |
| 801 "Irizarry, W. Huber (eds), Springer, New York, pages 397-420.") | |
| 802 cit[5] <- paste("Please cite the first paper for the software itself and the", | |
| 803 "other papers for the various original statistical methods", | |
| 804 "implemented in edgeR. See Section 1.2 in the", link[2], | |
| 805 "for more detail.") | |
| 806 cit[6] <- paste("Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a", | |
| 807 "Bioconductor package for differential expression analysis", | |
| 808 "of digital gene expression data. Bioinformatics 26, 139-140") | |
| 809 cit[7] <- paste("Robinson MD and Smyth GK (2007). Moderated statistical tests", | |
| 810 "for assessing differences in tag abundance. Bioinformatics", | |
| 811 "23, 2881-2887") | |
| 812 cit[8] <- paste("Robinson MD and Smyth GK (2008). Small-sample estimation of", | |
| 813 "negative binomial dispersion, with applications to SAGE data.", | |
| 814 "Biostatistics, 9, 321-332") | |
| 815 cit[9] <- paste("McCarthy DJ, Chen Y and Smyth GK (2012). Differential", | |
| 816 "expression analysis of multifactor RNA-Seq experiments with", | |
| 817 "respect to biological variation. Nucleic Acids Research 40,", | |
| 818 "4288-4297") | |
| 819 cit[10] <- paste("Law CW, Chen Y, Shi W, and Smyth GK (2014). Voom:", | |
| 820 "precision weights unlock linear model analysis tools for", | |
| 821 "RNA-seq read counts. Genome Biology 15, R29.") | |
| 822 cit[11] <- paste("Ritchie ME, Diyagama D, Neilson J, van Laar R,", | |
| 823 "Dobrovic A, Holloway A and Smyth GK (2006).", | |
| 824 "Empirical array quality weights for microarray data.", | |
| 825 "BMC Bioinformatics 7, Article 261.") | |
| 826 cata("<h3>Citations</h3>\n") | |
| 827 cata(cit[1], "\n") | |
| 828 cata("<br>\n") | |
| 829 cata(cit[2], "\n") | |
| 830 | |
| 831 cata("<h4>limma</h4>\n") | |
| 832 cata(cit[3], "\n") | |
| 833 cata("<ol>\n") | |
| 834 ListItem(cit[4]) | |
| 835 ListItem(cit[10]) | |
| 836 ListItem(cit[11]) | |
| 837 cata("</ol>\n") | |
| 838 | |
| 839 cata("<h4>edgeR</h4>\n") | |
| 840 cata(cit[5], "\n") | |
| 841 cata("<ol>\n") | |
| 842 ListItem(cit[6]) | |
| 843 ListItem(cit[7]) | |
| 844 ListItem(cit[8]) | |
| 845 ListItem(cit[9]) | |
| 846 cata("</ol>\n") | |
| 847 | |
| 848 cata("<p>Please report problems or suggestions to: su.s@wehi.edu.au</p>\n") | |
| 849 | |
| 850 for (i in 1:nrow(linkData)) { | |
| 851 if (grepl("session_info", linkData$Link[i])) { | |
| 852 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
| 853 } | |
| 854 } | |
| 855 | |
| 856 cata("<table border=\"0\">\n") | |
| 857 cata("<tr>\n") | |
| 858 TableItem("Task started at:"); TableItem(timeStart) | |
| 859 cata("</tr>\n") | |
| 860 cata("<tr>\n") | |
| 861 TableItem("Task ended at:"); TableItem(timeEnd) | |
| 862 cata("</tr>\n") | |
| 863 cata("<tr>\n") | |
| 864 TableItem("Task run time:"); TableItem(timeTaken) | |
| 865 cata("<tr>\n") | |
| 866 cata("</table>\n") | |
| 867 | |
| 868 cata("</body>\n") | |
| 869 cata("</html>") |
