Mercurial > repos > imgteam > projective_transformation_points
comparison projective_transformation_points.py @ 5:c88235457379 draft default tip
"planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/projective_transformation_points/ commit c4424f5dd4110c92ae39815ebfe2ea8c1010be9c"
| author | imgteam |
|---|---|
| date | Wed, 26 Jan 2022 15:25:08 +0000 |
| parents | b9121ff67280 |
| children |
comparison
equal
deleted
inserted
replaced
| 4:b9121ff67280 | 5:c88235457379 |
|---|---|
| 1 from skimage.transform import ProjectiveTransform | 1 """ |
| 2 from scipy.ndimage import map_coordinates | 2 Copyright 2019-2022 Biomedical Computer Vision Group, Heidelberg University. |
| 3 | |
| 4 Distributed under the MIT license. | |
| 5 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT | |
| 6 | |
| 7 """ | |
| 8 | |
| 9 import argparse | |
| 10 | |
| 3 import numpy as np | 11 import numpy as np |
| 4 import pandas as pd | 12 import pandas as pd |
| 5 import argparse | 13 from scipy.ndimage import map_coordinates |
| 14 from skimage.transform import ProjectiveTransform | |
| 6 | 15 |
| 7 | 16 |
| 8 def _stackcopy(a, b): | 17 def _stackcopy(a, b): |
| 9 if a.ndim == 3: | 18 if a.ndim == 3: |
| 10 a[:] = b[:, :, np.newaxis] | 19 a[:] = b[:, :, np.newaxis] |
| 19 coords_shape.append(shape[2]) | 28 coords_shape.append(shape[2]) |
| 20 coords = np.empty(coords_shape, dtype=dtype) | 29 coords = np.empty(coords_shape, dtype=dtype) |
| 21 | 30 |
| 22 tf_coords = np.indices((cols, rows), dtype=dtype).reshape(2, -1).T | 31 tf_coords = np.indices((cols, rows), dtype=dtype).reshape(2, -1).T |
| 23 | 32 |
| 24 for i in range(0, (tf_coords.shape[0]//batch_size+1)): | 33 for i in range(0, (tf_coords.shape[0] // batch_size + 1)): |
| 25 tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) | 34 tf_coords[batch_size * i:batch_size * (i + 1)] = coord_map(tf_coords[batch_size * i:batch_size * (i + 1)]) |
| 26 tf_coords = tf_coords.T.reshape((-1, cols, rows)).swapaxes(1, 2) | 35 tf_coords = tf_coords.T.reshape((-1, cols, rows)).swapaxes(1, 2) |
| 27 | 36 |
| 28 _stackcopy(coords[1, ...], tf_coords[0, ...]) | 37 _stackcopy(coords[1, ...], tf_coords[0, ...]) |
| 29 _stackcopy(coords[0, ...], tf_coords[1, ...]) | 38 _stackcopy(coords[0, ...], tf_coords[1, ...]) |
| 30 if len(shape) == 3: | 39 if len(shape) == 3: |
| 34 | 43 |
| 35 | 44 |
| 36 def warp_coords_batch(coord_map, coords, dtype=np.float64, batch_size=1000000): | 45 def warp_coords_batch(coord_map, coords, dtype=np.float64, batch_size=1000000): |
| 37 tf_coords = coords.astype(np.float32)[:, ::-1] | 46 tf_coords = coords.astype(np.float32)[:, ::-1] |
| 38 | 47 |
| 39 for i in range(0, (tf_coords.shape[0]//batch_size)+1): | 48 for i in range(0, (tf_coords.shape[0] // batch_size) + 1): |
| 40 tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) | 49 tf_coords[batch_size * i:batch_size * (i + 1)] = coord_map(tf_coords[batch_size * i:batch_size * (i + 1)]) |
| 41 | 50 |
| 42 return tf_coords[:, ::-1] | 51 return tf_coords[:, ::-1] |
| 43 | 52 |
| 44 | 53 |
| 45 def transform(fn_roi_coords, fn_warp_matrix, fn_out): | 54 def transform(fn_roi_coords, fn_warp_matrix, fn_out): |
| 46 data = pd.read_csv(fn_roi_coords, delimiter="\t") | 55 data = pd.read_csv(fn_roi_coords, delimiter="\t") |
| 47 all_data = np.array(data) | 56 all_data = np.array(data) |
| 48 | 57 |
| 49 nrows = all_data.shape[0] | 58 nrows, ncols = all_data.shape[0:2] |
| 50 ncols = all_data.shape[1] | 59 roi_coords = all_data.take([0, 1], axis=1).astype('int64') |
| 51 roi_coords = all_data.take([0,1],axis=1).astype('int64') | 60 |
| 52 | |
| 53 tol = 10 | 61 tol = 10 |
| 54 moving = np.zeros(np.max(roi_coords,axis=0)+tol, dtype=np.uint32) | 62 moving = np.zeros(np.max(roi_coords, axis=0) + tol, dtype=np.uint32) |
| 55 idx_roi_coords = (roi_coords[:,0]-1) * moving.shape[1] + roi_coords[:,1] - 1 | 63 idx_roi_coords = (roi_coords[:, 0] - 1) * moving.shape[1] + roi_coords[:, 1] - 1 |
| 56 moving.flat[idx_roi_coords] = np.transpose(np.arange(nrows)+1) | 64 moving.flat[idx_roi_coords] = np.transpose(np.arange(nrows) + 1) |
| 57 | 65 |
| 58 trans_matrix = np.array(pd.read_csv(fn_warp_matrix, delimiter="\t", header=None)) | 66 trans_matrix = np.array(pd.read_csv(fn_warp_matrix, delimiter="\t", header=None)) |
| 59 transP = ProjectiveTransform(matrix=trans_matrix) | 67 transP = ProjectiveTransform(matrix=trans_matrix) |
| 60 roi_coords_warped_direct = warp_coords_batch(transP, roi_coords) | 68 roi_coords_warped_direct = warp_coords_batch(transP, roi_coords) |
| 61 shape_fixed = np.round(np.max(roi_coords_warped_direct,axis=0)).astype(roi_coords.dtype)+tol | 69 shape_fixed = np.round(np.max(roi_coords_warped_direct, axis=0)).astype(roi_coords.dtype) + tol |
| 62 | 70 |
| 63 transI = ProjectiveTransform(matrix=np.linalg.inv(trans_matrix)) | 71 transI = ProjectiveTransform(matrix=np.linalg.inv(trans_matrix)) |
| 64 img_coords_warped = warp_img_coords_batch(transI, shape_fixed) | 72 img_coords_warped = warp_img_coords_batch(transI, shape_fixed) |
| 65 | 73 |
| 66 moving_warped = map_coordinates(moving, img_coords_warped, order=0, mode='constant', cval=0) | 74 moving_warped = map_coordinates(moving, img_coords_warped, order=0, mode='constant', cval=0) |
| 67 idx_roi_coords_warped = np.where(moving_warped>0) | 75 idx_roi_coords_warped = np.where(moving_warped > 0) |
| 68 roi_annots_warped = moving_warped.compress((moving_warped>0).flat) | 76 roi_annots_warped = moving_warped.compress((moving_warped > 0).flat) |
| 69 | 77 |
| 70 df = pd.DataFrame() | 78 df = pd.DataFrame() |
| 71 col_names = data.columns.tolist() | 79 col_names = data.columns.tolist() |
| 72 df['x'] = idx_roi_coords_warped[0] + 1 | 80 df['x'] = idx_roi_coords_warped[0] + 1 |
| 73 df['y'] = idx_roi_coords_warped[1] + 1 | 81 df['y'] = idx_roi_coords_warped[1] + 1 |
| 74 if ncols>2: | 82 if ncols > 2: |
| 75 for i in range(2,ncols): | 83 for i in range(2, ncols): |
| 76 df[col_names[i]] = all_data[:,i].take(roi_annots_warped) | 84 df[col_names[i]] = all_data[:, i].take(roi_annots_warped - 1) |
| 77 df.to_csv(fn_out, index = False, sep="\t") | 85 df.to_csv(fn_out, index=False, sep="\t") |
| 78 | 86 |
| 79 | 87 |
| 80 if __name__ == "__main__": | 88 if __name__ == "__main__": |
| 81 parser = argparse.ArgumentParser(description="Transform coordinates") | 89 parser = argparse.ArgumentParser(description="Transform ROIs defined by pixel (point) coordinates") |
| 82 parser.add_argument("coords", help="Paste path to .csv with coordinates (and labels) to transform (tab separated)") | 90 parser.add_argument("coords", help="Path to the TSV file of the coordinates (and labels) to be transformed") |
| 83 parser.add_argument("warp_matrix", help="Paste path to .csv that should be used for transformation (tab separated)") | 91 parser.add_argument("tmat", help="Path to the TSV file of the transformation matrix") |
| 84 parser.add_argument("out", help="Paste path to file in which transformed coords (and labels) should be saved (tab separated)") | 92 parser.add_argument("out", help="Path to the TSV file of the transformed coordinates (and labels)") |
| 85 args = parser.parse_args() | 93 args = parser.parse_args() |
| 86 transform(args.coords, args.warp_matrix, args.out) | 94 transform(args.coords, args.tmat, args.out) |
