Mercurial > repos > imgteam > imagej2_enhance_contrast
comparison imagej2_find_maxima_jython_script.py @ 0:2560c3f1445a draft default tip
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/image_processing/imagej2 commit b08f0e6d1546caaf627b21f8c94044285d5d5b9c-dirty"
| author | imgteam |
|---|---|
| date | Tue, 17 Sep 2019 16:57:26 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:2560c3f1445a |
|---|---|
| 1 import sys | |
| 2 import jython_utils | |
| 3 from ij import ImagePlus, IJ | |
| 4 from ij.plugin.filter import Analyzer, MaximumFinder | |
| 5 from ij.process import ImageProcessor | |
| 6 from jarray import array | |
| 7 | |
| 8 # Fiji Jython interpreter implements Python 2.5 which does not | |
| 9 # provide support for argparse. | |
| 10 error_log = sys.argv[ -10 ] | |
| 11 input = sys.argv[ -9 ] | |
| 12 scale_when_converting = jython_utils.asbool( sys.argv[ -8 ] ) | |
| 13 weighted_rgb_conversions = jython_utils.asbool( sys.argv[ -7 ] ) | |
| 14 noise_tolerance = int( sys.argv[ -6 ] ) | |
| 15 output_type = sys.argv[ -5 ] | |
| 16 exclude_edge_maxima = jython_utils.asbool( sys.argv[ -4 ] ) | |
| 17 light_background = jython_utils.asbool( sys.argv[ -3 ] ) | |
| 18 tmp_output_path = sys.argv[ -2 ] | |
| 19 output_datatype = sys.argv[ -1 ] | |
| 20 | |
| 21 # Open the input image file. | |
| 22 input_image_plus = IJ.openImage( input ) | |
| 23 | |
| 24 # Create a copy of the image. | |
| 25 input_image_plus_copy = input_image_plus.duplicate() | |
| 26 image_processor_copy = input_image_plus_copy.getProcessor() | |
| 27 bit_depth = image_processor_copy.getBitDepth() | |
| 28 analyzer = Analyzer( input_image_plus_copy ) | |
| 29 | |
| 30 try: | |
| 31 # Set the conversion options. | |
| 32 options = [] | |
| 33 # The following 2 options are applicable only to RGB images. | |
| 34 if bit_depth == 24: | |
| 35 if scale_when_converting: | |
| 36 option.append( "scale" ) | |
| 37 if weighted_rgb_conversions: | |
| 38 options.append( "weighted" ) | |
| 39 # Perform conversion - must happen even if no options are set. | |
| 40 IJ.run( input_image_plus_copy, "Conversions...", "%s" % " ".join( options ) ) | |
| 41 if output_type in [ 'List', 'Count' ]: | |
| 42 # W're generating a tabular file for the output. | |
| 43 # Set the Find Maxima options. | |
| 44 options = [ 'noise=%d' % noise_tolerance ] | |
| 45 if output_type.find( '_' ) > 0: | |
| 46 output_type_str = 'output=[%s]' % output_type.replace( '_', ' ' ) | |
| 47 else: | |
| 48 output_type_str = 'output=%s' % output_type | |
| 49 options.append( output_type_str ) | |
| 50 if exclude_edge_maxima: | |
| 51 options.append( 'exclude' ) | |
| 52 if light_background: | |
| 53 options.append( 'light' ) | |
| 54 # Run the command. | |
| 55 IJ.run( input_image_plus_copy, "Find Maxima...", "%s" % " ".join( options ) ) | |
| 56 results_table = analyzer.getResultsTable() | |
| 57 results_table.saveAs( tmp_output_path ) | |
| 58 else: | |
| 59 # Find the maxima of an image (does not find minima). | |
| 60 # LIMITATIONS: With output_type=Segmented_Particles | |
| 61 # (watershed segmentation), some segmentation lines | |
| 62 # may be improperly placed if local maxima are suppressed | |
| 63 # by the tolerance. | |
| 64 mf = MaximumFinder() | |
| 65 if output_type == 'Single_Points': | |
| 66 output_type_param = mf.SINGLE_POINTS | |
| 67 elif output_type == 'Maxima_Within_Tolerance': | |
| 68 output_type_param = mf.IN_TOLERANCE | |
| 69 elif output_type == 'Segmented_Particles': | |
| 70 output_type_param = mf.SEGMENTED | |
| 71 elif output_type == 'List': | |
| 72 output_type_param = mf.LIST | |
| 73 elif output_type == 'Count': | |
| 74 output_type_param = mf.COUNT | |
| 75 # Get a new byteProcessor with a normal (uninverted) LUT where | |
| 76 # the marked points are set to 255 (Background 0). Pixels outside | |
| 77 # of the roi of the input image_processor_copy are not set. No | |
| 78 # output image is created for output types POINT_SELECTION, LIST | |
| 79 # and COUNT. In these cases findMaxima returns null. | |
| 80 byte_processor = mf.findMaxima( image_processor_copy, | |
| 81 noise_tolerance, | |
| 82 ImageProcessor.NO_THRESHOLD, | |
| 83 output_type_param, | |
| 84 exclude_edge_maxima, | |
| 85 False ) | |
| 86 # Invert the image or ROI. | |
| 87 byte_processor.invert() | |
| 88 if output_type == 'Segmented_Particles' and not light_background: | |
| 89 # Invert the values in this image's LUT (indexed color model). | |
| 90 byte_processor.invertLut() | |
| 91 image_plus = ImagePlus( "output", byte_processor ) | |
| 92 IJ.saveAs( image_plus, output_datatype, tmp_output_path ) | |
| 93 except Exception, e: | |
| 94 jython_utils.handle_error( error_log, str( e ) ) |
