Mercurial > repos > imgteam > 2d_auto_threshold
view auto_threshold.py @ 4:7d80eb2411fb draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/2d_auto_threshold/ commit 01343602708de3cc7fa4986af9000adc36dd0651
author | imgteam |
---|---|
date | Sat, 07 Jun 2025 18:38:16 +0000 |
parents | 5224cc463a97 |
children |
line wrap: on
line source
""" Copyright 2017-2024 Biomedical Computer Vision Group, Heidelberg University. Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import numpy as np import skimage.filters import skimage.util from giatools.image import Image class DefaultThresholdingMethod: def __init__(self, thres, accept: list[str] | None = None, **kwargs): self.thres = thres self.accept = accept if accept else [] self.kwargs = kwargs def __call__(self, image, *args, offset=0, **kwargs): accepted_kwargs = self.kwargs.copy() for key, val in kwargs.items(): if key in self.accept: accepted_kwargs[key] = val thres = self.thres(image, *args, **accepted_kwargs) return image > thres + offset class ManualThresholding: def __call__(self, image, thres1: float, thres2: float | None, **kwargs): if thres2 is None: return image > thres1 else: thres1, thres2 = sorted((thres1, thres2)) return skimage.filters.apply_hysteresis_threshold(image, thres1, thres2) th_methods = { 'manual': ManualThresholding(), 'otsu': DefaultThresholdingMethod(skimage.filters.threshold_otsu), 'li': DefaultThresholdingMethod(skimage.filters.threshold_li), 'yen': DefaultThresholdingMethod(skimage.filters.threshold_yen), 'isodata': DefaultThresholdingMethod(skimage.filters.threshold_isodata), 'loc_gaussian': DefaultThresholdingMethod(skimage.filters.threshold_local, accept=['block_size'], method='gaussian'), 'loc_median': DefaultThresholdingMethod(skimage.filters.threshold_local, accept=['block_size'], method='median'), 'loc_mean': DefaultThresholdingMethod(skimage.filters.threshold_local, accept=['block_size'], method='mean'), } def do_thresholding( input_filepath: str, output_filepath: str, th_method: str, block_size: int, offset: float, threshold1: float, threshold2: float | None, invert_output: bool, ): assert th_method in th_methods, f'Unknown method "{th_method}"' # Load image img_in = Image.read(input_filepath) # Perform thresholding result = th_methods[th_method]( image=img_in.data, block_size=block_size, offset=offset, thres1=threshold1, thres2=threshold2, ) if invert_output: result = np.logical_not(result) # Convert to canonical representation for binary images result = (result * 255).astype(np.uint8) # Write result Image( data=skimage.util.img_as_ubyte(result), axes=img_in.axes, ).normalize_axes_like( img_in.original_axes, ).write( output_filepath, ) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Automatic image thresholding') parser.add_argument('input', type=str, help='Path to the input image') parser.add_argument('output', type=str, help='Path to the output image (uint8)') parser.add_argument('th_method', choices=th_methods.keys(), help='Thresholding method') parser.add_argument('block_size', type=int, help='Odd size of pixel neighborhood for calculating the threshold') parser.add_argument('offset', type=float, help='Offset of automatically determined threshold value') parser.add_argument('threshold1', type=float, help='Manual threshold value') parser.add_argument('--threshold2', type=float, help='Second manual threshold value (for hysteresis thresholding)') parser.add_argument('--invert_output', default=False, action='store_true', help='Values below/above the threshold are labeled with 0/255 by default, and with 255/0 if this argument is used') args = parser.parse_args() do_thresholding( args.input, args.output, args.th_method, args.block_size, args.offset, args.threshold1, args.threshold2, args.invert_output, )