Mercurial > repos > imgteam > 2d_auto_threshold
comparison auto_threshold.py @ 5:1ae14e703e5b draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/2d_auto_threshold/ commit 71f7ecabba78de48147d4a5e6ea380b6b70b16e8
| author | imgteam |
|---|---|
| date | Sat, 03 Jan 2026 14:42:51 +0000 |
| parents | 7d80eb2411fb |
| children |
comparison
equal
deleted
inserted
replaced
| 4:7d80eb2411fb | 5:1ae14e703e5b |
|---|---|
| 1 """ | 1 """ |
| 2 Copyright 2017-2024 Biomedical Computer Vision Group, Heidelberg University. | 2 Copyright 2017-2025 Biomedical Computer Vision Group, Heidelberg University. |
| 3 | 3 |
| 4 Distributed under the MIT license. | 4 Distributed under the MIT license. |
| 5 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT | 5 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| 6 """ | 6 """ |
| 7 | 7 |
| 8 import argparse | 8 import giatools |
| 9 | |
| 10 import numpy as np | 9 import numpy as np |
| 11 import skimage.filters | 10 import skimage.filters |
| 12 import skimage.util | 11 import skimage.util |
| 13 from giatools.image import Image | 12 |
| 13 # Fail early if an optional backend is not available | |
| 14 giatools.require_backend('omezarr') | |
| 14 | 15 |
| 15 | 16 |
| 16 class DefaultThresholdingMethod: | 17 class DefaultThresholdingMethod: |
| 17 | 18 |
| 18 def __init__(self, thres, accept: list[str] | None = None, **kwargs): | 19 def __init__(self, thres, **kwargs): |
| 19 self.thres = thres | 20 self.thres = thres |
| 20 self.accept = accept if accept else [] | |
| 21 self.kwargs = kwargs | 21 self.kwargs = kwargs |
| 22 | 22 |
| 23 def __call__(self, image, *args, offset=0, **kwargs): | 23 def __call__(self, image, *args, offset=0, **kwargs): |
| 24 accepted_kwargs = self.kwargs.copy() | 24 thres = self.thres(image, *args, **(self.kwargs | kwargs)) |
| 25 for key, val in kwargs.items(): | |
| 26 if key in self.accept: | |
| 27 accepted_kwargs[key] = val | |
| 28 thres = self.thres(image, *args, **accepted_kwargs) | |
| 29 return image > thres + offset | 25 return image > thres + offset |
| 26 | |
| 27 def __str__(self): | |
| 28 return self.thres.__name__ | |
| 30 | 29 |
| 31 | 30 |
| 32 class ManualThresholding: | 31 class ManualThresholding: |
| 33 | 32 |
| 34 def __call__(self, image, thres1: float, thres2: float | None, **kwargs): | 33 def __call__(self, image, threshold1: float, threshold2: float | None, **kwargs): |
| 35 if thres2 is None: | 34 if threshold2 is None: |
| 36 return image > thres1 | 35 return image > threshold1 |
| 37 else: | 36 else: |
| 38 thres1, thres2 = sorted((thres1, thres2)) | 37 threshold1, threshold2 = sorted((threshold1, threshold2)) |
| 39 return skimage.filters.apply_hysteresis_threshold(image, thres1, thres2) | 38 return skimage.filters.apply_hysteresis_threshold(image, threshold1, threshold2) |
| 39 | |
| 40 def __str__(self): | |
| 41 return 'Manual' | |
| 40 | 42 |
| 41 | 43 |
| 42 th_methods = { | 44 methods = { |
| 43 'manual': ManualThresholding(), | 45 'manual': ManualThresholding(), |
| 44 | 46 |
| 45 'otsu': DefaultThresholdingMethod(skimage.filters.threshold_otsu), | 47 'otsu': DefaultThresholdingMethod(skimage.filters.threshold_otsu), |
| 46 'li': DefaultThresholdingMethod(skimage.filters.threshold_li), | 48 'li': DefaultThresholdingMethod(skimage.filters.threshold_li), |
| 47 'yen': DefaultThresholdingMethod(skimage.filters.threshold_yen), | 49 'yen': DefaultThresholdingMethod(skimage.filters.threshold_yen), |
| 48 'isodata': DefaultThresholdingMethod(skimage.filters.threshold_isodata), | 50 'isodata': DefaultThresholdingMethod(skimage.filters.threshold_isodata), |
| 49 | 51 |
| 50 'loc_gaussian': DefaultThresholdingMethod(skimage.filters.threshold_local, accept=['block_size'], method='gaussian'), | 52 'loc_gaussian': DefaultThresholdingMethod(skimage.filters.threshold_local, method='gaussian'), |
| 51 'loc_median': DefaultThresholdingMethod(skimage.filters.threshold_local, accept=['block_size'], method='median'), | 53 'loc_median': DefaultThresholdingMethod(skimage.filters.threshold_local, method='median'), |
| 52 'loc_mean': DefaultThresholdingMethod(skimage.filters.threshold_local, accept=['block_size'], method='mean'), | 54 'loc_mean': DefaultThresholdingMethod(skimage.filters.threshold_local, method='mean'), |
| 53 } | 55 } |
| 54 | 56 |
| 55 | 57 |
| 56 def do_thresholding( | 58 if __name__ == "__main__": |
| 57 input_filepath: str, | 59 tool = giatools.ToolBaseplate() |
| 58 output_filepath: str, | 60 tool.add_input_image('input') |
| 59 th_method: str, | 61 tool.add_output_image('output') |
| 60 block_size: int, | 62 tool.parse_args() |
| 61 offset: float, | |
| 62 threshold1: float, | |
| 63 threshold2: float | None, | |
| 64 invert_output: bool, | |
| 65 ): | |
| 66 assert th_method in th_methods, f'Unknown method "{th_method}"' | |
| 67 | 63 |
| 68 # Load image | 64 # Retrieve general parameters |
| 69 img_in = Image.read(input_filepath) | 65 method = tool.args.params.pop('method') |
| 66 invert = tool.args.params.pop('invert') | |
| 70 | 67 |
| 71 # Perform thresholding | 68 # Perform thresholding |
| 72 result = th_methods[th_method]( | 69 method_impl = methods[method] |
| 73 image=img_in.data, | 70 print( |
| 74 block_size=block_size, | 71 'Thresholding:', |
| 75 offset=offset, | 72 str(method_impl), |
| 76 thres1=threshold1, | 73 'with', |
| 77 thres2=threshold2, | 74 ', '.join( |
| 75 f'{key}={repr(value)}' for key, value in (tool.args.params | dict(invert=invert)).items() | |
| 76 ), | |
| 78 ) | 77 ) |
| 79 if invert_output: | 78 for section in tool.run('ZYX', output_dtype_hint='binary'): |
| 80 result = np.logical_not(result) | 79 section_output = method_impl( |
| 81 | 80 image=np.asarray(section['input'].data), # some implementations have issues with Dask arrays |
| 82 # Convert to canonical representation for binary images | 81 **tool.args.params, |
| 83 result = (result * 255).astype(np.uint8) | 82 ) |
| 84 | 83 if invert: |
| 85 # Write result | 84 section_output = np.logical_not(section_output) |
| 86 Image( | 85 section['output'] = section_output |
| 87 data=skimage.util.img_as_ubyte(result), | |
| 88 axes=img_in.axes, | |
| 89 ).normalize_axes_like( | |
| 90 img_in.original_axes, | |
| 91 ).write( | |
| 92 output_filepath, | |
| 93 ) | |
| 94 | |
| 95 | |
| 96 if __name__ == "__main__": | |
| 97 parser = argparse.ArgumentParser(description='Automatic image thresholding') | |
| 98 parser.add_argument('input', type=str, help='Path to the input image') | |
| 99 parser.add_argument('output', type=str, help='Path to the output image (uint8)') | |
| 100 parser.add_argument('th_method', choices=th_methods.keys(), help='Thresholding method') | |
| 101 parser.add_argument('block_size', type=int, help='Odd size of pixel neighborhood for calculating the threshold') | |
| 102 parser.add_argument('offset', type=float, help='Offset of automatically determined threshold value') | |
| 103 parser.add_argument('threshold1', type=float, help='Manual threshold value') | |
| 104 parser.add_argument('--threshold2', type=float, help='Second manual threshold value (for hysteresis thresholding)') | |
| 105 parser.add_argument('--invert_output', default=False, action='store_true', help='Values below/above the threshold are labeled with 0/255 by default, and with 255/0 if this argument is used') | |
| 106 args = parser.parse_args() | |
| 107 | |
| 108 do_thresholding( | |
| 109 args.input, | |
| 110 args.output, | |
| 111 args.th_method, | |
| 112 args.block_size, | |
| 113 args.offset, | |
| 114 args.threshold1, | |
| 115 args.threshold2, | |
| 116 args.invert_output, | |
| 117 ) |
