Mercurial > repos > greg > yolo
view yolo.xml @ 14:d91971ea456a draft
Uploaded
author | greg |
---|---|
date | Tue, 17 Oct 2017 11:09:08 -0400 |
parents | 7b23bb42fc2a |
children | d88ebe9130f3 |
line wrap: on
line source
<tool id="yolo" name="YOLO" version="1.0"> <description>real-time object detection</description> <requirements> <requirement type="package" version="1.0">darknet</requirement> </requirements> <command detect_errors="exit_code"><![CDATA[ mkdir input_dir && mkdir output_dir && cp -R /home/greg/_conda/envs/__darknet@1.0/bin/* . && #for $i in $input: #set input_filename = $i.file_name #set name = $i.name #set output_filename = "%s_predictions.png" % $name ln -s $input_filename input_dir/$name && darknet detect cfg/yolo.cfg yolo.weights 'input_dir/$name' -thresh $thresh 2> /dev/null && mv ./predictions.png output_dir/$output_filename #end for ]]></command> <inputs> <param name="input" format="jpg" type="data_collection" collection_type="list" label="Collection of image files" /> <param name="thresh" type="float" value="0.25" label="Object detection threshold" /> </inputs> <outputs> <collection name="output" type="list"> <discover_datasets pattern="__name__" directory="output_dir" format="png" /> </collection> </outputs> <tests> <test> </test> </tests> <help> **What it does** You only look once (YOLO) is a state-of-the-art, real-time object detection system. ----- **Options** </help> <citations> <citation type="bibtex"> @misc{darknet13, author = {Joseph Redmon}, title = {Darknet: Open Source Neural Networks in C}, url = {http://pjreddie.com/darknet/}, year = {2013--2016}} </citation> <citation type="bibtex"> @article{redmon2016yolo9000, title={YOLO9000: Better, Faster, Stronger}, author={Redmon, Joseph and Farhadi, Ali}, journal={arXiv preprint arXiv:1612.08242}, year={2016}} </citation> </citations> </tool>