# HG changeset patch
# User greg
# Date 1543430958 18000
# Node ID 18001e7cb19991cfc5ef06840639d5434da2c873
# Parent a71901fd532590568298477ef5d455c46884ef49
Uploaded
diff -r a71901fd5325 -r 18001e7cb199 multilocus_genotype.R
--- a/multilocus_genotype.R Wed Nov 21 10:04:47 2018 -0500
+++ b/multilocus_genotype.R Wed Nov 28 13:49:18 2018 -0500
@@ -2,19 +2,26 @@
suppressPackageStartupMessages(library("adegenet"))
suppressPackageStartupMessages(library("ape"))
+suppressPackageStartupMessages(library("data.table"))
+#suppressPackageStartupMessages(library("dbplyr"))
+suppressPackageStartupMessages(library("dplyr"))
suppressPackageStartupMessages(library("ggplot2"))
suppressPackageStartupMessages(library("knitr"))
suppressPackageStartupMessages(library("optparse"))
suppressPackageStartupMessages(library("poppr"))
suppressPackageStartupMessages(library("RColorBrewer"))
+suppressPackageStartupMessages(library("RPostgres"))
+#suppressPackageStartupMessages(library("tidyr"))
suppressPackageStartupMessages(library("vcfR"))
suppressPackageStartupMessages(library("vegan"))
option_list <- list(
- make_option(c("--input_vcf"), action="store", dest="input_vcf", help="VCF input file"),
+ make_option(c("--database_connection_string"), action="store", dest="database_connection_string", help="Corals (stag) database connection string"),
+ make_option(c("--input_affy_metadata"), action="store", dest="input_affy_metadata", help="Affymetrix 96 well plate input file"),
make_option(c("--input_pop_info"), action="store", dest="input_pop_info", help="Population information input file"),
- make_option(c("--output_missing_data"), action="store", dest="output_missing_data", help="Missing data outputfile"),
- make_option(c("--output_mlg_id"), action="store", dest="output_mlg_id", help="Mlg Id data outputfile")
+ make_option(c("--input_vcf"), action="store", dest="input_vcf", help="VCF input file"),
+ make_option(c("--output_mlg_id"), action="store", dest="output_mlg_id", help="Mlg Id data output file"),
+ make_option(c("--output_stag_db_report"), action="store", dest="output_stag_db_report", help="stag db report output file")
)
parser <- OptionParser(usage="%prog [options] file", option_list=option_list);
@@ -26,54 +33,206 @@
return(file_path);
}
-# Extract Provesti's distance from the distance matrix.
-provesti_distance <- function(distance, selection) {
- eval(parse(text=paste("as.matrix(distance)[", selection, "]")));
-}
-
# Read in VCF input file.
vcf <- read.vcfR(opt$input_vcf);
#Missing GT in samples submitted
gt <- extract.gt(vcf, element="GT", as.numeric=FALSE);
-myMiss <- apply(gt, MARGIN=2, function(x){ sum(is.na(x))});
-myMiss <- (myMiss / nrow(vcf)) * 100;
-miss <- data.frame(myMiss);
-write.table(miss, file=opt$output_missing_data, quote=FALSE);
+missing_gt <- apply(gt, MARGIN=2, function(x){ sum(is.na(x))});
+missing_gt <- (missing_gt / nrow(vcf)) * 100;
+missing_gt_data_frame <- data.frame(missing_gt);
+
+hets <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("0/1", x))))} );
+hets <- (hets / nrow(vcf)) * 100;
+ht <- data.frame(hets);
+
+refA <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("0/0", x))))} );
+refA <- (refA / nrow(vcf)) * 100;
+rA <- data.frame(refA);
-# Convert VCF file into formats compatiable with the Poppr package.
-genind <- vcfR2genind(vcf);
+altB <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("1/1", x))))} );
+altB <- (altB / nrow(vcf)) * 100;
+aB <- data.frame(altB);
+
+# Convert VCF file into a genind for the Poppr package.
+# TODO: probably should not hard-code 2 cores.
+gl <- vcfR2genlight(vcf, n.cores=2);
+genind <- new("genind", (as.matrix(gl)));
+
# Add population information to the genind object.
-poptab <- read.table(opt$input_pop_info, check.names=FALSE, header=T, na.strings = c("", "NA"));
+poptab <- read.table(opt$input_pop_info, check.names=FALSE, header=T, na.strings=c("", "NA"));
genind@pop <- as.factor(poptab$region);
-# Convert genind to genclone object
+
+# Convert genind object to a genclone object.
gclo <- as.genclone(genind);
-# Calculate the bitwise distance between individuals,
-# the following is similar to Provesti's distance.
-xdis <- bitwise.dist(gclo, missing_match=FALSE);
+
+# Calculate the bitwise distance between individuals.
+xdis <- bitwise.dist(gclo);
-# Multilocus genotypes (threshold of 1.6%).
-mlg.filter(gclo, distance=xdis) <- 0.016;
-# Start PDF device driver.
-dev.new(width=10, height=7);
-file_path = get_file_path("mlg_table.pdf");
-pdf(file=file_path, width=10, height=7);
+# Multilocus genotypes (threshold of 1%).
+mlg.filter(gclo, distance=xdis) <- 0.01;
m <- mlg.table(gclo, background=TRUE, color=TRUE);
-dev.off();
# Create table of MLGs.
id <- mlg.id(gclo);
-df <- data.frame(matrix((id), byrow=T));
-write.table(df, file=opt$output_mlg_id);
+dt <- data.table(id, keep.rownames=TRUE);
+setnames(dt, c("id"), c("user_specimen_id"));
+
+# Read user's Affymetrix 96 well plate csv file.
+pinfo <- read.csv(opt$input_affy_metadata, stringsAsFactors=FALSE);
+pinfo <- pinfo$user_specimen_id;
+pi <- data.table(pinfo);
+setnames(pi, c("pinfo"), c("user_specimen_id"));
+
+# Instantiate database connection.
+# The connection string has this format:
+# postgresql://user:password@host/dbname
+conn_string <- opt$database_connection_string;
+conn_items <- strsplit(conn_string, "://")[[1]];
+string_needed <- conn_items[1];
+items_needed <- strsplit(string_needed, "@")[[1]];
+user_pass_string <- items_needed[1];
+host_dbname_string <- items_needed[2];
+user_pass_items <- strsplit(user_pass_string, ":")[[1]];
+host_dbname_items <- strsplit(host_dbname_string, "/")[[1]];
+user <- user_pass_items[1];
+pass <- user_pass_items[2];
+host <- host_dbname_items[1];
+dbname <- host_dbname_items[2];
+# FIXME: is there a way to not hard-code the port?
+conn <- DBI::dbConnect(RPostgres::Postgres(), host=host, port='5432', dbname=dbname, user=user, password=pass);
+
+# Import the sample table.
+sample_table <- tbl(conn, "sample");
+
+# Select user_specimen_id and mlg columns.
+smlg <- sample_table %>% select(user_specimen_id, coral_mlg_clonal_id, symbio_mlg_clonal_id);
+
+# Convert to dataframe.
+sm <- data.frame(smlg);
+sm[sm==""] <- NA;
+
+# Convert missing data into data table.
+mi <-setDT(missing_gt_data_frame, keep.rownames=TRUE)[];
+# Change names to match db.
+setnames(mi, c("rn"), c("user_specimen_id"));
+setnames(mi, c("myMiss"), c("percent_missing_data_coral"));
+# Round missing data to two digits.
+mi$percent_missing <- round(mi$percent_missing, digits=2);
+
+# Convert heterozygosity data into data table.
+ht <-setDT(ht, keep.rownames=TRUE)[];
+# Change names to match db.
+setnames(ht, c("rn"), c("user_specimen_id"));
+setnames(ht, c("hets"), c("percent_mixed_coral"));
+# Round missing data to two digits.
+ht$percent_mixed<-round(ht$percent_mixed, digits=2);
+
+# Convert refA data into data.table.
+rA <-setDT(rA, keep.rownames=TRUE)[];
+# Change names to match db.
+setnames(rA, c("rn"), c("user_specimen_id"));
+setnames(rA, c("refA"), c("percent_reference_coral"));
+# round missing data to two digits.
+rA$percent_reference<-round(rA$percent_reference, digits=2);
+
+# Convert altB data into data table.
+aB <-setDT(aB, keep.rownames=TRUE)[];
+# Change names to match db.
+setnames(aB, c("rn"), c("user_specimen_id"));
+setnames(aB, c("altB"), c("percent_alternative_coral"));
+# Round missing data to two digits.
+aB$percent_alternative<-round(aB$percent_alternative, digits=2);
+
+#convert mlg id to data.table format
+dt <- data.table(id, keep.rownames=TRUE);
+# Change name to match db.
+setnames(dt, c("id"), c("user_specimen_id"));
+
+# Transform.
+df3 <- dt %>%
+ group_by(row_number()) %>%
+ dplyr::rename(group='row_number()') %>%
+ unnest (user_specimen_id) %>%
+ # Join with mlg table.
+ left_join(sm %>%
+ select("user_specimen_id","coral_mlg_clonal_id"), by='user_specimen_id');
+
+# If found in database, group members on previous mlg id.
+uniques <- unique(df3[c("group", "coral_mlg_clonal_id")]);
+uniques <- uniques[!is.na(uniques$coral_mlg_clonal_id),];
+na.mlg <- which(is.na(df3$coral_mlg_clonal_id));
+na.group <- df3$group[na.mlg];
+df3$coral_mlg_clonal_id[na.mlg] <- uniques$coral_mlg_clonal_id[match(na.group, uniques$group)];
+
+# Determine if the sample mlg matched previous genotyped sample.
+df4<- df3 %>%
+ group_by(group) %>%
+ mutate(DB_match = ifelse(is.na(coral_mlg_clonal_id),"no_match","match"));
+
+# Create new mlg id for samples that did not match those in the database.
+none <- unique(df4[c("group", "coral_mlg_clonal_id")]);
+none <- none[is.na(none$coral_mlg_clonal_id),];
+na.mlg2 <- which(is.na(df4$coral_mlg_clonal_id));
+n.g <- df4$group[na.mlg2];
+ct <- length(unique(n.g));
+
+# List of new group ids, the sequence starts at the number of
+# ids present in df4$coral_mlg_clonal_ids plus 1. Not sure if
+# the df4 file contains all ids. If it doesn't then look below
+# to change the seq() function.
+n.g_ids <- sprintf("HG%04d", seq((sum(!is.na(unique(df4["coral_mlg_clonal_id"]))) + 1), by=1, length=ct));
+# This is a key for pairing group with new ids.
+rat <- cbind(unique(n.g), n.g_ids);
+# this for loop assigns the new id iteratively for all that have NA.
+for (i in 1:length(na.mlg2)) {
+ df4$coral_mlg_clonal_id[na.mlg2[i]] <- n.g_ids[match(df4$group[na.mlg2[i]], unique(n.g))];
+}
+
+# Merge data frames for final table.
+report_user <- pi %>%
+ # Join with the second file (only the first and third column).
+ left_join(df4 %>%
+ select("user_specimen_id","coral_mlg_clonal_id","DB_match"),
+ by='user_specimen_id') %>%
+ # Join with the second file (only the first and third column).
+ left_join(mi %>%
+ select("user_specimen_id","percent_missing_coral"),
+ by='user_specimen_id') %>%
+ # Join with the second file (only the first and third column).
+ left_join(ht %>%
+ select("user_specimen_id","percent_mixed_coral"),
+ by='user_specimen_id') %>%
+ # Join with the second file (only the first and third column);
+ left_join(rA %>%
+ select("user_specimen_id","percent_reference_coral"),
+ by='user_specimen_id') %>%
+ # Join with the second file (only the first and third column).
+ left_join(aB %>%
+ select("user_specimen_id","percent_alternative_coral"),
+ by='user_specimen_id') %>%
+ mutate(DB_match = ifelse(is.na(DB_match), "failed", DB_match))%>%
+ mutate(coral_mlg_clonal_id=ifelse(is.na(coral_mlg_clonal_id), "failed", coral_mlg_clonal_id))%>%
+ ungroup() %>%
+ select(-group);
+
+write.csv(report_user, file=paste(opt$output_stag_db_report), quote=FALSE);
# Rarifaction curve.
-H.obj <- mlg.table(gclo, plot=TRUE);
# Start PDF device driver.
dev.new(width=10, height=7);
file_path = get_file_path("geno_rarifaction_curve.pdf");
pdf(file=file_path, width=10, height=7);
-rarecurve(H.obj, ylab="Number of expected MLGs", sample=min(rowSums(H.obj)), border=NA, fill=NA, font=2, cex=1, col="blue");
-dev.off()
+rarecurve(m, ylab="Number of expected MLGs", sample=min(rowSums(m)), border=NA, fill=NA, font=2, cex=1, col="blue");
+dev.off();
+
+# Genotype accumulation curve, sample is number of
+# loci randomly selected for to make the curve.
+dev.new(width=10, height=7);
+file_path = get_file_path("geno_accumulation_curve.pdf");
+pdf(file=file_path, width=10, height=7);
+genotype_curve(gind, sample=5, quiet=TRUE);
+dev.off();
# Create a phylogeny of samples based on distance matrices.
cols <- palette(brewer.pal(n=12, name='Set3'));
@@ -83,10 +242,12 @@
file_path = get_file_path("nj_phylogeny.pdf");
pdf(file=file_path, width=10, height=7);
# Organize branches by clade.
-tree <- gclo %>% aboot(dist=provesti.dist, sample=10, tree="nj", cutoff=50, quiet=TRUE) %>% ladderize();
+tree <- gclo %>%
+ aboot(dist=provesti.dist, sample=10, tree="nj", cutoff=50, quiet=TRUE) %>%
+ ladderize();
plot.phylo(tree, tip.color=cols[obj2$pop],label.offset=0.0125, cex=0.7, font=2, lwd=4);
# Add a scale bar showing 5% difference..
add.scale.bar(length=0.05, cex=0.65);
nodelabels(tree$node.label, cex=.5, adj=c(1.5, -0.1), frame="n", font=3, xpd=TRUE);
-dev.off()
+dev.off();
diff -r a71901fd5325 -r 18001e7cb199 multilocus_genotype.xml
--- a/multilocus_genotype.xml Wed Nov 21 10:04:47 2018 -0500
+++ b/multilocus_genotype.xml Wed Nov 28 13:49:18 2018 -0500
@@ -3,11 +3,14 @@
r-adegenet
r-ape
+ r-data.table
+ r-dplyr
r-ggplot2
r-knitr
r-optparse
r-poppr
r-rcolorbrewer
+ r-rpostgres
r-vegan
r-vcfr
@@ -15,17 +18,20 @@
#set output_plots_dir = 'output_plots_dir'
mkdir $output_plots_dir &&
Rscript '$__tool_directory__/multilocus_genotype.R'
---input_vcf '$input_vcf'
+--database_connection_string '$__app__.config.corals_database_connection'
+--input_affy_metadata '$input_affy_metadata'
--input_pop_info '$input_pop_info'
---output_missing_data '$output_missing_data'
+--input_vcf '$input_vcf'
+--output_stag_db_report '$output_stag_db_report'
--output_mlg_id '$output_mlg_id']]>
+
+
-
@@ -56,3 +62,4 @@
+