Mercurial > repos > greg > multilocus_genotype
view multilocus_genotype.R @ 17:85f8fc57eee4 draft
Uploaded
author | greg |
---|---|
date | Wed, 17 Apr 2019 09:07:04 -0400 |
parents | c4ec8727b50c |
children | 1190ee1456f6 |
line wrap: on
line source
#!/usr/bin/env Rscript suppressPackageStartupMessages(library("adegenet")) suppressPackageStartupMessages(library("ape")) suppressPackageStartupMessages(library("data.table")) suppressPackageStartupMessages(library("dbplyr")) suppressPackageStartupMessages(library("dplyr")) suppressPackageStartupMessages(library("ggplot2")) suppressPackageStartupMessages(library("knitr")) suppressPackageStartupMessages(library("optparse")) suppressPackageStartupMessages(library("poppr")) suppressPackageStartupMessages(library("RColorBrewer")) suppressPackageStartupMessages(library("rnaturalearth")) suppressPackageStartupMessages(library("rnaturalearthdata")) suppressPackageStartupMessages(library("RPostgres")) suppressPackageStartupMessages(library("sf")) suppressPackageStartupMessages(library(SNPRelate)) suppressPackageStartupMessages(library("tidyr")) suppressPackageStartupMessages(library("vcfR")) suppressPackageStartupMessages(library("vegan")) suppressPackageStartupMessages(library("yarrr")) theme_set(theme_bw()) option_list <- list( make_option(c("--database_connection_string"), action="store", dest="database_connection_string", help="Corals (stag) database connection string"), make_option(c("--input_affy_metadata"), action="store", dest="input_affy_metadata", help="Affymetrix 96 well plate input file"), make_option(c("--input_pop_info"), action="store", dest="input_pop_info", help="Population information input file"), make_option(c("--input_vcf"), action="store", dest="input_vcf", help="VCF input file"), make_option(c("--output_stag_db_report"), action="store", dest="output_stag_db_report", help="stag db report output file"), make_option(c("--nj_tree"), action="store", dest="nj_tree", help="neighbor-joining tree output file") ) parser <- OptionParser(usage="%prog [options] file", option_list=option_list); args <- parse_args(parser, positional_arguments=TRUE); opt <- args$options; get_file_path = function(file_name) { file_path = paste("output_plots_dir", file_name, sep="/"); return(file_path); } get_database_connection <- function(db_conn_string) { # Instantiate database connection. # The connection string has this format: # postgresql://user:password@host/dbname conn_items <- strsplit(db_conn_string, "://")[[1]]; string_needed <- conn_items[2]; items_needed <- strsplit(string_needed, "@")[[1]]; user_pass_string <- items_needed[1]; host_dbname_string <- items_needed[2]; user_pass_items <- strsplit(user_pass_string, ":")[[1]]; host_dbname_items <- strsplit(host_dbname_string, "/")[[1]]; user <- user_pass_items[1]; pass <- user_pass_items[2]; host <- host_dbname_items[1]; dbname <- host_dbname_items[2]; # FIXME: is there a way to not hard-code the port? conn <- DBI::dbConnect(RPostgres::Postgres(), host=host, port="5432", dbname=dbname, user=user, password=pass); return (conn); } # Read in VCF input file. vcf <- read.vcfR(opt$input_vcf); # Convert VCF file into a genind for the Poppr package. # TODO: probably should not hard-code 2 cores. # changed to genind format for extracting alleles later # trade-off is it is a bit slower to import data # gl <- vcfR2genlight(vcf, n.cores=2) # gind <- new("genind", (as.matrix(gl))) gind <- vcfR2genind(vcf); # Add population information to the genind object. poptab <- read.table(opt$input_pop_info, check.names=FALSE, header=F, na.strings=c("", "NA"), stringsAsFactors=FALSE, sep="\t"); colnames(poptab) <- c("row_id", "affy_id", "user_specimen_id", "region"); gind@pop <- as.factor(poptab$region); strata(gind)<-data.frame(pop(gind)); # Convert genind object to a genclone object. obj2 <- as.genclone(gind); # Calculate the bitwise distance between individuals. xdis <- bitwise.dist(obj2); # Multilocus genotypes (threshold of 3.2%). # threshold doubled because of how the data is formatted in genind compared to genlight mlg.filter(obj2, distance=xdis) <- 0.032; m <- mlg.table(obj2, background=TRUE, color=TRUE); # Create table of MLGs. id <- mlg.id(obj2); #dt <- data.table(id, keep.rownames=TRUE); #setnames(dt, c("id"), c("affy_id")); # Read user's Affymetrix 96 well plate tabular file. pinfo <- read.table(opt$input_affy_metadata, header=FALSE, stringsAsFactors=FALSE, sep="\t", na.strings = c("", "NA")); colnames(pinfo) <- c("user_specimen_id", "field_call", "bcoral_genet_id", "bsym_genet_id", "reef", "region", "latitude", "longitude", "geographic_origin", "sample_location", "latitude_outplant", "longitude_outplant", "depth", "disease_resist", "bleach_resist", "mortality","tle", "spawning", "collector_last_name", "collector_first_name", "organization", "collection_date", "email", "seq_facility", "array_version", "public", "public_after_date", "sperm_motility", "healing_time", "dna_extraction_method", "dna_concentration", "registry_id"); pinfo$user_specimen_id <- as.character(pinfo$user_specimen_id); pinfo2 <- as.character(pinfo$user_specimen_id); pi <- data.table(pinfo2, pinfo$field_call); setnames(pi, c("pinfo2"), c("user_specimen_id")); setnames(pi, c("V2"), c("field_call")); # Connect to database. conn <- get_database_connection(opt$database_connection_string); # Import the sample table. sample_table <- tbl(conn, "sample"); # Import the genotype table. genotype_table <- tbl(conn, "genotype"); # Select columns from the sample table and the # genotype table joined by genotype_id. sample_table_columns <- sample_table %>% select(user_specimen_id, affy_id, genotype_id); smlg <- sample_table_columns %>% left_join(genotype_table %>% select("id", "coral_mlg_clonal_id", "symbio_mlg_clonal_id"), by=c("genotype_id" = "id")); # Convert to dataframe. sm <- data.frame(smlg); # Name the columns. colnames(sm) <- c("user_specimen_id", "affy_id", "genotype_id", "coral_mlg_clonal_id", "symbio_mlg_clonal_id"); # Missing GT in samples submitted. gt <- extract.gt(vcf, element="GT", as.numeric=FALSE); myMiss <- apply(gt, MARGIN=2, function(x){ sum(is.na(x))}); myMiss <- (myMiss / nrow(vcf)) * 100; miss <- data.frame(myMiss); # Convert missing data into data table. mi <-setDT(miss, keep.rownames=TRUE)[]; setnames(mi, c("rn"), c("affy_id")); setnames(mi, c("myMiss"), c("percent_missing_data_coral")); # Round missing data to two digits. mi$percent_missing_data_coral <- round(mi$percent_missing_data_coral, digits=2); #heterozygous alleles hets <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("0/1", x))))} ); hets <- (hets / nrow(vcf)) * 100; ht <- data.frame(hets); # Convert heterozygosity data into data table. ht <-setDT(ht, keep.rownames=TRUE)[]; setnames(ht, c("rn"), c("affy_id")); setnames(ht, c("hets"), c("percent_mixed_coral")); # Round missing data to two digits. ht$percent_mixed<-round(ht$percent_mixed, digits=2); #reference alleles refA <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("0/0", x))))} ); refA <- (refA / nrow(vcf)) * 100; rA <- data.frame(refA); # Convert refA data into data.table. rA <-setDT(rA, keep.rownames=TRUE)[]; setnames(rA, c("rn"), c("affy_id")); setnames(rA, c("refA"), c("percent_reference_coral")); # round missing data to two digits. rA$percent_reference<-round(rA$percent_reference, digits=2); #alternative alleles altB <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("1/1", x))))} ); altB <- (altB / nrow(vcf)) * 100; aB <- data.frame(altB); # Convert altB data into data table. aB <-setDT(aB, keep.rownames=TRUE)[]; setnames(aB, c("rn"), c("affy_id")); setnames(aB, c("altB"), c("percent_alternative_coral")); # Round missing data to two digits. aB$percent_alternative<-round(aB$percent_alternative, digits=2); #convert mlg id to data.table format dt <- data.table(id, keep.rownames=TRUE); setnames(dt, c("id"), c("affy_id")); # Transform. df3 <- dt %>% group_by(row_number()) %>% dplyr::rename(group="row_number()") %>% unnest (affy_id) %>% # Join with mlg table. left_join(sm %>% select("affy_id","coral_mlg_clonal_id"), by="affy_id"); # If found in database, group members on previous mlg id. uniques <- unique(df3[c("group", "coral_mlg_clonal_id")]); uniques <- uniques[!is.na(uniques$coral_mlg_clonal_id),]; na.mlg <- which(is.na(df3$coral_mlg_clonal_id)); na.group <- df3$group[na.mlg]; df3$coral_mlg_clonal_id[na.mlg] <- uniques$coral_mlg_clonal_id[match(na.group, uniques$group)]; # Determine if the sample mlg matched previous genotyped sample. df4<- df3 %>% group_by(group) %>% mutate(DB_match = ifelse(is.na(coral_mlg_clonal_id),"no_match", "match")); # Create new mlg id for samples that did not match those in the database. none <- unique(df4[c("group", "coral_mlg_clonal_id")]); none <- none[is.na(none$coral_mlg_clonal_id),]; na.mlg2 <- which(is.na(df4$coral_mlg_clonal_id)); n.g <- df4$group[na.mlg2]; ct <- length(unique(n.g)); # List of new group ids, the sequence starts at the number of # ids present in df4$coral_mlg_clonal_ids plus 1. Not sure if # the df4 file contains all ids. If it doesn't then look below # to change the seq() function. n.g_ids <- sprintf("HG%04d", seq((sum(!is.na(unique(df4["coral_mlg_clonal_id"]))) + 1), by=1, length=ct)); # Pair group with new ids. rat <- cbind(unique(n.g), n.g_ids); # Assign the new id iteratively for all that have NA. for (i in 1:length(na.mlg2)) { df4$coral_mlg_clonal_id[na.mlg2[i]] <- n.g_ids[match(df4$group[na.mlg2[i]], unique(n.g))]; } # Subset poptab for all samples. subpop <- poptab[c(2, 3)]; # Merge data frames for final table. report_user <- pi %>% left_join(subpop %>% select("affy_id", "user_specimen_id"), by="user_specimen_id") %>% left_join(df4 %>% select("affy_id", "coral_mlg_clonal_id", "DB_match"), by="affy_id") %>% left_join(mi %>% select("affy_id", "percent_missing_data_coral"), by="affy_id") %>% left_join(ht %>% select("affy_id", "percent_mixed_coral"), by="affy_id") %>% left_join(rA %>% select("affy_id", "percent_reference_coral"), by="affy_id") %>% left_join(aB %>% select("affy_id", "percent_alternative_coral"), by="affy_id") %>% mutate(DB_match = ifelse(is.na(DB_match), "failed", DB_match))%>% mutate(coral_mlg_clonal_id = ifelse(is.na(coral_mlg_clonal_id), "failed", coral_mlg_clonal_id)) %>% mutate(genetic_coral_species_call=ifelse(percent_alternative_coral >= 40 & percent_alternative_coral<= 44.5,"A.palmata","other")) %>% mutate(genetic_coral_species_call=ifelse(percent_alternative_coral >= 45.5 & percent_alternative_coral<= 50,"A.cervicornis",genetic_coral_species_call)) %>% mutate(genetic_coral_species_call=ifelse(percent_heterozygous_coral > 40,"A.prolifera",genetic_coral_species_call)) %>% ungroup() %>% select(-group); write.csv(report_user, file=opt$output_stag_db_report, quote=FALSE); # Database tables ## Sample.table sample_db <- pinfo %>% left_join( report_user %>% select("user_specimen_id","affy_id", "percent_missing_data_coral","percent_heterozygous_coral","percent_reference_coral", "percent_alternative_coral"), by='user_specimen_id'); ###representative clone for genotype.table cc<-clonecorrect(obj2, strata= ~pop.gind.); id_rep<-mlg.id(cc); dt_cc<-data.table(id_rep,keep.rownames = TRUE); setnames(dt_cc, c("id_rep"), c("affy_id")); ###transform mlg data.table df_cc <- dt_cc %>% group_by(row_number()) %>% rename(group='row_number()') %>% unnest(affy_id) %>% left_join(report_user %>% select("coral_mlg_clonal_id","user_specimen_id","affy_id"), by='affy_id') %>% mutate(coral_mlg_rep_sample_id=ifelse(is.na(coral_mlg_clonal_id),"",affy_id)) %>% ungroup() %>% select(-group); ##geno.table geno_db <- df4 %>% left_join(df_cc %>% select("affy_id","coral_mlg_rep_sample_id","user_specimen_id"), by='affy_id') %>% ungroup() %>% select(-group); ##taxonomy.table tax_db <- report_user %>% select(genetic_coral_species_call, affy_id) %>% mutate(genus_name =ifelse(genetic_coral_species_call== genetic_coral_species_call[grep("^A.*",genetic_coral_species_call)],"Acropora","other")) %>% mutate(species_name=ifelse(genetic_coral_species_call=="A.palmata","palmata","other"))%>% mutate(species_name=ifelse(genetic_coral_species_call =="A.cervicornis","cervicornis",species_name))%>% mutate(species_name=ifelse(genetic_coral_species_call=="A.prolifera","prolifera", species_name)); # Table of alleles for the new samples ## subset to new plate data ### create vector indicating number of individuals desired ### made from affy_id collumn from report_user data table i<-ifelse(is.na(report_user[1]),"",report_user[[1]]); i<-i[!apply(i == "", 1, all),]; sub96<-obj2[i, mlg.reset = FALSE, drop = FALSE]; # convert to data frame at_96<-genind2df(sub96, sep=""); at_96<- at_96 %>% select(-pop); # allele string for Allele.table in database uat_96<-unite(at_96, alleles, 1:19696, sep = " ", remove = TRUE); uat_96<-setDT(uat_96, keep.rownames = TRUE)[]; setnames(uat_96, c("rn"), c("user_specimen_id")); # write.csv(uat_96,file=paste("Seed_genotype_alleles.csv",sep = ""),quote=FALSE,row.names=FALSE); # Create a phylogeny of samples based on distance matrices. cols <- piratepal("basel"); set.seed(999); # Start PDF device driver. dev.new(width=10, height=7); file_path = get_file_path("nj_phylogeny.pdf"); pdf(file=file_path, width=10, height=7); # Organize branches by clade. theTree <- sub96 %>% aboot(dist=provesti.dist, sample=100, tree="nj", cutoff=50, quiet=TRUE) %>% ladderize(); theTree$tip.label <- report_user$user_specimen_id[match(theTree$tip.label, report_user$affy_id)]; plot.phylo(theTree, tip.color=cols[sub96$pop], label.offset=0.0125, cex=0.3, font=2, lwd=4, align.tip.label=F, no.margin=T); # Add a scale bar showing 5% difference.. add.scale.bar(0, 0.95, length=0.05, cex=0.65, lwd=3); nodelabels(theTree$node.label, cex=.5, adj=c(1.5, -0.1), frame="n", font=3, xpd=TRUE); legend("topright", legend=c(levels(sub96$pop)), text.col=cols, xpd=T, cex=0.8); dev.off() write.tree(theTree, file =opt$nj_tree, quote=FALSE); # identity-by-state analysis #if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") #BiocManager::install("SNPRelate", version = "3.8") #subset VCF to the user samples l<-length(i); n<-ncol(vcf@gt); s<-n-l; svcf<-vcf[,s:n]; write.vcf(svcf, "subset.vcf.gz"); vcf.fn <- "subset.vcf.gz"; snpgdsVCF2GDS(vcf.fn, "test3.gds", method="biallelic.only"); genofile <- snpgdsOpen(filename="test3.gds", readonly=FALSE); hd<-read.gdsn(index.gdsn(genofile, "sample.id")); hd<-data.frame(hd); hd<-setDT(hd, keep.rownames = FALSE)[]; setnames(hd, c("hd"), c("user_specimen_id")); subpop2<- poptab[c(2,4)]; poptab_sub <- hd %>% left_join( subpop2 %>% select("affy_id","region"), by='affy_id')%>% drop_na(); samp.annot <- data.frame(pop.group = c(poptab_sub$region)); add.gdsn(genofile, "sample.annot", samp.annot); pop_code <- read.gdsn(index.gdsn(genofile, path="sample.annot/pop.group")); pop.group <- as.factor(read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))); # Identity-By-State Analysis - distance matrix calculation ibs <- snpgdsIBS(genofile, num.thread=2, autosome.only=FALSE); # cluster analysis on the genome-wide IBS pairwise distance matrix set.seed(100); par(cex=0.6, cex.lab=1, cex.axis=1.5,cex.main=2); ibs.hc <- snpgdsHCluster(snpgdsIBS(genofile, autosome.only=FALSE)); # default clustering. dev.new(width=10, height=7); file_path = get_file_path("IBS_default.pdf"); pdf (file=file_path, width=10, height=7); rv <- snpgdsCutTree(ibs.hc, col.list=cols, pch.list=15); snpgdsDrawTree(rv, main="Color by Cluster", leaflab="perpendicular",y.label=0.2); legend("topleft", legend=levels(rv$samp.group), xpd=T, col=cols[1:nlevels(rv$samp.group)], pch=15, ncol=4, cex=1.2); dev.off() # color cluster by region. dev.new(width=10, height=7); file_path = get_file_path("IBS_Region.pdf"); pdf (file=file_path, width=10, height=7); race <- as.factor(pop_code); rv2 <- snpgdsCutTree(ibs.hc,samp.group=race,col.list=cols,pch.list=15); snpgdsDrawTree(rv2, main="Color by Region", leaflab="perpendicular",y.label=0.2); legend("topleft", legend=levels(race), xpd=T, col=cols[1:nlevels(race)], pch=15, ncol=4, cex=1.2); dev.off() #close GDS file snpgdsClose(genofile); # Sample MLG on a map. world <- ne_countries(scale = "medium", returnclass = "sf"); class(world); pinfo$mlg<-report_user$coral_mlg_clonal_id; n <- nrow(pinfo); mxlat<-max(pinfo$latitude,na.rm = TRUE); mnlat<-min(pinfo$latitude,na.rm = TRUE); mxlong<-max(pinfo$longitude,na.rm = TRUE); mnlong<-min(pinfo$longitude,na.rm = TRUE); p5<-ggplot(data = world) + geom_sf() + coord_sf(xlim = c(mnlong-3, mxlong+3), ylim = c(mnlat-3,mxlat+3), expand = FALSE); colourCount = length(unique(pinfo$mlg)); getPalette = colorRampPalette(piratepal("basel")); dev.new(width=10, height=7); file_path = get_file_path("mlg_map.pdf"); pdf (file=file_path, width=10, height=7); p6<-p5+ geom_point(data = pinfo,aes(x =longitude, y=latitude, group=mlg, color = mlg), alpha=.7, size=3)+ scale_color_manual(values=getPalette(colourCount))+ theme(legend.position="bottom")+ guides(color=guide_legend(nrow=8,byrow=F)); p6; dev.off() # Missing data barplot. poptab$miss <- report_user$percent_missing_data_coral[match(miss$affy_id, report_user$affy_id)]; test2 <- which(!is.na(poptab$miss)); miss96 <- poptab$miss[test2]; name96 <- poptab$user_specimen_id[test2]; dev.new(width=10, height=7); file_path = get_file_path("missing_data.pdf"); pdf (file=file_path, width=10, height=7); par(mar = c(8, 4, 4, 2)); x <- barplot(miss96, las=2, col=cols, ylim=c(0, 3), cex.axis=0.8, space=0.8, ylab="Missingness (%)", xaxt="n"); text(cex=0.6, x=x-0.25, y=-.05, name96, xpd=TRUE, srt=60, adj=1); dev.off() # Generate a pie chart for each sample with a genotype. # Store the numerical and user_specimen_id values from # report_user for the charts (user_specimen_id names # will be used to label each chart). dt1 <- data.table(report_user); dt1 <- report_user[c(-2, -3, -4)]; dt1 <- na.omit(dt1); # Translate to N (i.e., number of samples with a # genotype) columns and 5 rows. tdt1 <- t(dt1); # Make another data table and transpose it the same as dt1 to # get numerics. These will feed into the creation of N vectors. dt2 <- data.table(report_user); dt2 <- report_user[c(-1, -2, -3, -4)]; # Translate to N columns and 5 rows. tdt2 <- t(dt2); tdt1_matrix <- as.matrix(tdt1[-1,]); # The number of columns is the number of samples with genotypes. nc <- ncol(tdt1_matrix); mode(tdt1_matrix) <- "numeric"; spy <- rowMeans(tdt1_matrix); dev.new(width=10, height=7); file_path = get_file_path("percent_breakdown.pdf"); pdf(file=file_path, width=10, height=7); # Average pie of all samples. labels <- paste(c("missing data", "mixed", "reference", "alternative"), " (", round(spy, 1), "%)", sep=""); col <- c("GREY", "#006DDB", "#24FF24", "#920000"); main <- "Average breakdown of SNP assignments across all samples"; pie(spy, labels=labels, radius=0.60, col=col, main=main, cex.main=.75); par(mfrow=c(3, 2)); col <- c("GREY", "#006DDB", "#24FF24", "#920000"); for (i in 1:nc) { tmp_labels <- paste(labels, " (", round(tdt1_matrix[,i], 1), "%)", sep=""); main <- paste("Breakdown of SNP assignments for", tdt1[1, i]); pie(tdt1_matrix[,i], labels=tmp_labels, radius=0.90, col=col, main=main, cex.main=.85, cex=0.75); } dev.off()