changeset 0:cbfa8c336751 draft

Uploaded
author greg
date Tue, 28 Nov 2017 13:18:32 -0500
parents
children 84a2e30b5404
files linear_fascile_evaluation.py linear_fascile_evaluation.xml
diffstat 2 files changed, 169 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/linear_fascile_evaluation.py	Tue Nov 28 13:18:32 2017 -0500
@@ -0,0 +1,125 @@
+#!/usr/bin/env python
+import argparse
+import numpy as np
+import os.path as op
+import nibabel as nib
+import dipy.core.optimize as opt
+import dipy.tracking.life as life
+import matplotlib.pyplot as plt
+import matplotlib
+
+from dipy.viz.colormap import line_colors
+from dipy.viz import fvtk
+from mpl_toolkits.axes_grid1 import AxesGrid
+
+parser = argparse.ArgumentParser()
+parser.add_argument('--candidates', dest='candidates', help='Candidates selection')
+parser.add_argument('--output_life_candidates', dest='output_life_candidates', help='Output life candidates')
+parser.add_argument('--output_life_optimized', dest='output_life_optimized', help='Output life optimized streamlines')
+parser.add_argument('--output_beta_histogram', dest='output_beta_histogram', help='Output beta histogram')
+parser.add_argument('--output_error_histograms', dest='output_error_histograms', help='Output error histograms')
+parser.add_argument('--output_spatial_errors', dest='output_spatial_errors', help='Output spatial errors')
+
+args = parser.parse_args()
+
+if not op.exists(args.candidates):
+    from streamline_tools import *
+else:
+    # We'll need to know where the corpus callosum is from these variables:
+    from dipy.data import (read_stanford_labels, fetch_stanford_t1, read_stanford_t1)
+    hardi_img, gtab, labels_img = read_stanford_labels()
+    labels = labels_img.get_data()
+    cc_slice = labels == 2
+    fetch_stanford_t1()
+    t1 = read_stanford_t1()
+    t1_data = t1.get_data()
+    data = hardi_img.get_data()
+
+# Read the candidates from file in voxel space:
+candidate_sl = [s[0] for s in nib.trackvis.read(args.candidates, points_space='voxel')[0]]
+# Visualize the initial candidate group of streamlines
+# in 3D, relative to the anatomical structure of this brain.
+candidate_streamlines_actor = fvtk.streamtube(candidate_sl, line_colors(candidate_sl))
+cc_ROI_actor = fvtk.contour(cc_slice, levels=[1], colors=[(1., 1., 0.)], opacities=[1.])
+vol_actor = fvtk.slicer(t1_data)
+vol_actor.display(40, None, None)
+vol_actor2 = vol_actor.copy()
+vol_actor2.display(None, None, 35)
+# Add display objects to canvas.
+ren = fvtk.ren()
+fvtk.add(ren, candidate_streamlines_actor)
+fvtk.add(ren, cc_ROI_actor)
+fvtk.add(ren, vol_actor)
+fvtk.add(ren, vol_actor2)
+fvtk.record(ren, n_frames=1, out_path=args.output_life_candidates, size=(800, 800))
+# Initialize a LiFE model.
+fiber_model = life.FiberModel(gtab)
+# Fit the model, producing a FiberFit class instance,
+# that stores the data, as well as the results of the
+# fitting procedure.
+fiber_fit = fiber_model.fit(data, candidate_sl, affine=np.eye(4))
+fig, ax = plt.subplots(1)
+ax.hist(fiber_fit.beta, bins=100, histtype='step')
+ax.set_xlabel('Fiber weights')
+ax.set_ylabel('# fibers')
+fig.savefig(args.output_beta_histogram)
+# Filter out these redundant streamlines and
+# generate an optimized group of streamlines.
+optimized_sl = list(np.array(candidate_sl)[np.where(fiber_fit.beta>0)[0]])
+ren = fvtk.ren()
+fvtk.add(ren, fvtk.streamtube(optimized_sl, line_colors(optimized_sl)))
+fvtk.add(ren, cc_ROI_actor)
+fvtk.add(ren, vol_actor)
+fvtk.record(ren, n_frames=1, out_path=args.output_life_optimized, size=(800, 800))
+model_predict = fiber_fit.predict()
+# Focus on the error in prediction of the diffusion-weighted
+# data, and calculate the root of the mean squared error.
+model_error = model_predict - fiber_fit.data
+model_rmse = np.sqrt(np.mean(model_error[:, 10:] ** 2, -1))
+# Calculate another error term by assuming that the weight for each streamline
+# is equal to zero. This produces the naive prediction of the mean of the
+# signal in each voxel.
+beta_baseline = np.zeros(fiber_fit.beta.shape[0])
+pred_weighted = np.reshape(opt.spdot(fiber_fit.life_matrix, beta_baseline), (fiber_fit.vox_coords.shape[0], np.sum(~gtab.b0s_mask)))
+mean_pred = np.empty((fiber_fit.vox_coords.shape[0], gtab.bvals.shape[0]))
+S0 = fiber_fit.b0_signal
+# Since the fitting is done in the demeaned S/S0 domain,
+# add back the mean and then multiply by S0 in every voxel:
+mean_pred[..., gtab.b0s_mask] = S0[:, None]
+mean_pred[..., ~gtab.b0s_mask] = (pred_weighted + fiber_fit.mean_signal[:, None]) * S0[:, None]
+mean_error = mean_pred - fiber_fit.data
+mean_rmse = np.sqrt(np.mean(mean_error ** 2, -1))
+# Compare the overall distribution of errors
+# between these two alternative models of the ROI.
+fig, ax = plt.subplots(1)
+ax.hist(mean_rmse - model_rmse, bins=100, histtype='step')
+ax.text(0.2, 0.9,'Median RMSE, mean model: %.2f' % np.median(mean_rmse), horizontalalignment='left', verticalalignment='center', transform=ax.transAxes)
+ax.text(0.2, 0.8,'Median RMSE, LiFE: %.2f' % np.median(model_rmse), horizontalalignment='left', verticalalignment='center', transform=ax.transAxes)
+ax.set_xlabel('RMS Error')
+ax.set_ylabel('# voxels')
+fig.savefig(args.output_error_histograms)
+# Show the spatial distribution of the two error terms,
+# and of the improvement with the model fit:
+vol_model = np.ones(data.shape[:3]) * np.nan
+vol_model[fiber_fit.vox_coords[:, 0], fiber_fit.vox_coords[:, 1], fiber_fit.vox_coords[:, 2]] = model_rmse
+vol_mean = np.ones(data.shape[:3]) * np.nan
+vol_mean[fiber_fit.vox_coords[:, 0], fiber_fit.vox_coords[:, 1], fiber_fit.vox_coords[:, 2]] = mean_rmse
+vol_improve = np.ones(data.shape[:3]) * np.nan
+vol_improve[fiber_fit.vox_coords[:, 0], fiber_fit.vox_coords[:, 1], fiber_fit.vox_coords[:, 2]] = mean_rmse - model_rmse
+sl_idx = 49
+fig = plt.figure()
+fig.subplots_adjust(left=0.05, right=0.95)
+ax = AxesGrid(fig, 111, nrows_ncols = (1, 3), label_mode = "1", share_all = True, cbar_location="top", cbar_mode="each", cbar_size="10%", cbar_pad="5%")
+ax[0].matshow(np.rot90(t1_data[sl_idx, :, :]), cmap=matplotlib.cm.bone)
+im = ax[0].matshow(np.rot90(vol_model[sl_idx, :, :]), cmap=matplotlib.cm.hot)
+ax.cbar_axes[0].colorbar(im)
+ax[1].matshow(np.rot90(t1_data[sl_idx, :, :]), cmap=matplotlib.cm.bone)
+im = ax[1].matshow(np.rot90(vol_mean[sl_idx, :, :]), cmap=matplotlib.cm.hot)
+ax.cbar_axes[1].colorbar(im)
+ax[2].matshow(np.rot90(t1_data[sl_idx, :, :]), cmap=matplotlib.cm.bone)
+im = ax[2].matshow(np.rot90(vol_improve[sl_idx, :, :]), cmap=matplotlib.cm.RdBu)
+ax.cbar_axes[2].colorbar(im)
+for lax in ax:
+    lax.set_xticks([])
+    lax.set_yticks([])
+fig.savefig(args.output_spatial_errors)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/linear_fascile_evaluation.xml	Tue Nov 28 13:18:32 2017 -0500
@@ -0,0 +1,44 @@
+<tool id="linear_fascile_evaluation" name="Linear fascicle evaluation" version="0.13.0">
+    <description>(LiFE) for tractography results</description>
+    <requirements>
+        <requirement type="package" version="0.13.0">dipy</requirement>
+    </requirements>
+    <command detect_errors="exit_code"><![CDATA[
+python '$__tool_directory__/linear_fascile_evaluation.py'
+--candidates '$candidates'
+--output_life_candidates '$output_life_candidates'
+--output_life_optimized '$output_life_optimized'
+--output_error_histograms '$output_error_histograms'
+--output_beta_histogram '$output_beta_histogram'
+--output_spatial_errors 'output_spatial_errors'
+    ]]></command>
+    <inputs>
+        <param name="candidates" type="select" label="Candidates">
+            <option value="lr-superiorfrontal.trk" selected="true">lr-superiorfrontal.trk</option>
+        </param>
+    </inputs>
+    <outputs>
+        <data name="output_spatial_errors" format="png" label="${tool.name}: Spatial Errors" />
+        <data name="output_beta_histogram" format="png" label="${tool.name}: Beta Histogram" />
+        <data name="output_error_histograms" format="png" label="${tool.name}: Error Histograms" />
+        <data name="output_life_optimized" format="png" label="${tool.name}: LiFE Optimized Streamlines" />
+        <data name="output_life_candidates" format="png" label="${tool.name}: LiFE Candidates" />
+    </outputs>
+    <tests>
+        <test>
+        </test>
+    </tests>
+    <help>
+**What it does**
+
+Uses a forward model that predicts the signal from each of a set of streamlines, and fits a
+linear model to these simultaneous predictions for evaluation of tractography results.
+
+-----
+
+**Options**
+
+    </help>
+    <citations>
+    </citations>
+</tool>