Mercurial > repos > greg > linear_fascile_evaluation
changeset 10:2de70534993d draft
Uploaded
author | greg |
---|---|
date | Thu, 30 Nov 2017 11:28:22 -0500 |
parents | 6ad10978f14d |
children | e92da88ff396 |
files | linear_fascile_evaluation.py |
diffstat | 1 files changed, 18 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/linear_fascile_evaluation.py Thu Nov 30 11:28:15 2017 -0500 +++ b/linear_fascile_evaluation.py Thu Nov 30 11:28:22 2017 -0500 @@ -1,5 +1,6 @@ #!/usr/bin/env python import argparse +import os import shutil import dipy.core.optimize as opt @@ -18,22 +19,36 @@ import numpy as np parser = argparse.ArgumentParser() -parser.add_argument('--input', dest='input', help='Track Visualization Header dataset') +parser.add_argument('--input_nifti1', dest='input_nifti1', help='Input nifti1 dataset') +parser.add_argument('--input_nifti1_files_path', dest='input_nifti1_files_path', help='Input nifti1 extra files path') +parser.add_argument('--input_nifti2', dest='input_nifti2', help='Input nifti2 dataset') +parser.add_argument('--input_nifti2_files_path', dest='input_nifti2_files_path', help='Input nifti2 extra files path') +parser.add_argument('--input_trackvis', dest='input_trackvis', help='Track Visualization Header dataset') parser.add_argument('--output_life_candidates', dest='output_life_candidates', help='Output life candidates') args = parser.parse_args() +# Get input data. +# TODO: do not hard-code 'stanford_hardi' +input_dir = 'stanford_hardi' +os.mkdir(input_dir) +# Copy the dRMI dataset (stanford_t1) files. +for f in os.listdir(args.input_nifti1_files_path): + shutil.copy(os.path.join(args.input_nifti1_files_path, f), input_dir) +# Copy the dRMI dataset and label map (stanford_hardi) files. +for f in os.listdir(args.input_nifti2_files_path): + shutil.copy(os.path.join(args.input_nifti2_files_path, f), input_dir) + # We'll need to know where the corpus callosum is from these variables. hardi_img, gtab, labels_img = read_stanford_labels() labels = labels_img.get_data() cc_slice = labels == 2 -fetch_stanford_t1() t1 = read_stanford_t1() t1_data = t1.get_data() data = hardi_img.get_data() # Read the candidates from file in voxel space: -candidate_sl = [s[0] for s in nib.trackvis.read(args.input, points_space='voxel')[0]] +candidate_sl = [s[0] for s in nib.trackvis.read(args.input_trackvis, points_space='voxel')[0]] # Visualize the initial candidate group of streamlines # in 3D, relative to the anatomical structure of this brain. candidate_streamlines_actor = fvtk.streamtube(candidate_sl, line_colors(candidate_sl))