Mercurial > repos > greg > linear_fascile_evaluation
comparison linear_fascile_evaluation.py @ 0:cbfa8c336751 draft
Uploaded
author | greg |
---|---|
date | Tue, 28 Nov 2017 13:18:32 -0500 |
parents | |
children | 84a2e30b5404 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:cbfa8c336751 |
---|---|
1 #!/usr/bin/env python | |
2 import argparse | |
3 import numpy as np | |
4 import os.path as op | |
5 import nibabel as nib | |
6 import dipy.core.optimize as opt | |
7 import dipy.tracking.life as life | |
8 import matplotlib.pyplot as plt | |
9 import matplotlib | |
10 | |
11 from dipy.viz.colormap import line_colors | |
12 from dipy.viz import fvtk | |
13 from mpl_toolkits.axes_grid1 import AxesGrid | |
14 | |
15 parser = argparse.ArgumentParser() | |
16 parser.add_argument('--candidates', dest='candidates', help='Candidates selection') | |
17 parser.add_argument('--output_life_candidates', dest='output_life_candidates', help='Output life candidates') | |
18 parser.add_argument('--output_life_optimized', dest='output_life_optimized', help='Output life optimized streamlines') | |
19 parser.add_argument('--output_beta_histogram', dest='output_beta_histogram', help='Output beta histogram') | |
20 parser.add_argument('--output_error_histograms', dest='output_error_histograms', help='Output error histograms') | |
21 parser.add_argument('--output_spatial_errors', dest='output_spatial_errors', help='Output spatial errors') | |
22 | |
23 args = parser.parse_args() | |
24 | |
25 if not op.exists(args.candidates): | |
26 from streamline_tools import * | |
27 else: | |
28 # We'll need to know where the corpus callosum is from these variables: | |
29 from dipy.data import (read_stanford_labels, fetch_stanford_t1, read_stanford_t1) | |
30 hardi_img, gtab, labels_img = read_stanford_labels() | |
31 labels = labels_img.get_data() | |
32 cc_slice = labels == 2 | |
33 fetch_stanford_t1() | |
34 t1 = read_stanford_t1() | |
35 t1_data = t1.get_data() | |
36 data = hardi_img.get_data() | |
37 | |
38 # Read the candidates from file in voxel space: | |
39 candidate_sl = [s[0] for s in nib.trackvis.read(args.candidates, points_space='voxel')[0]] | |
40 # Visualize the initial candidate group of streamlines | |
41 # in 3D, relative to the anatomical structure of this brain. | |
42 candidate_streamlines_actor = fvtk.streamtube(candidate_sl, line_colors(candidate_sl)) | |
43 cc_ROI_actor = fvtk.contour(cc_slice, levels=[1], colors=[(1., 1., 0.)], opacities=[1.]) | |
44 vol_actor = fvtk.slicer(t1_data) | |
45 vol_actor.display(40, None, None) | |
46 vol_actor2 = vol_actor.copy() | |
47 vol_actor2.display(None, None, 35) | |
48 # Add display objects to canvas. | |
49 ren = fvtk.ren() | |
50 fvtk.add(ren, candidate_streamlines_actor) | |
51 fvtk.add(ren, cc_ROI_actor) | |
52 fvtk.add(ren, vol_actor) | |
53 fvtk.add(ren, vol_actor2) | |
54 fvtk.record(ren, n_frames=1, out_path=args.output_life_candidates, size=(800, 800)) | |
55 # Initialize a LiFE model. | |
56 fiber_model = life.FiberModel(gtab) | |
57 # Fit the model, producing a FiberFit class instance, | |
58 # that stores the data, as well as the results of the | |
59 # fitting procedure. | |
60 fiber_fit = fiber_model.fit(data, candidate_sl, affine=np.eye(4)) | |
61 fig, ax = plt.subplots(1) | |
62 ax.hist(fiber_fit.beta, bins=100, histtype='step') | |
63 ax.set_xlabel('Fiber weights') | |
64 ax.set_ylabel('# fibers') | |
65 fig.savefig(args.output_beta_histogram) | |
66 # Filter out these redundant streamlines and | |
67 # generate an optimized group of streamlines. | |
68 optimized_sl = list(np.array(candidate_sl)[np.where(fiber_fit.beta>0)[0]]) | |
69 ren = fvtk.ren() | |
70 fvtk.add(ren, fvtk.streamtube(optimized_sl, line_colors(optimized_sl))) | |
71 fvtk.add(ren, cc_ROI_actor) | |
72 fvtk.add(ren, vol_actor) | |
73 fvtk.record(ren, n_frames=1, out_path=args.output_life_optimized, size=(800, 800)) | |
74 model_predict = fiber_fit.predict() | |
75 # Focus on the error in prediction of the diffusion-weighted | |
76 # data, and calculate the root of the mean squared error. | |
77 model_error = model_predict - fiber_fit.data | |
78 model_rmse = np.sqrt(np.mean(model_error[:, 10:] ** 2, -1)) | |
79 # Calculate another error term by assuming that the weight for each streamline | |
80 # is equal to zero. This produces the naive prediction of the mean of the | |
81 # signal in each voxel. | |
82 beta_baseline = np.zeros(fiber_fit.beta.shape[0]) | |
83 pred_weighted = np.reshape(opt.spdot(fiber_fit.life_matrix, beta_baseline), (fiber_fit.vox_coords.shape[0], np.sum(~gtab.b0s_mask))) | |
84 mean_pred = np.empty((fiber_fit.vox_coords.shape[0], gtab.bvals.shape[0])) | |
85 S0 = fiber_fit.b0_signal | |
86 # Since the fitting is done in the demeaned S/S0 domain, | |
87 # add back the mean and then multiply by S0 in every voxel: | |
88 mean_pred[..., gtab.b0s_mask] = S0[:, None] | |
89 mean_pred[..., ~gtab.b0s_mask] = (pred_weighted + fiber_fit.mean_signal[:, None]) * S0[:, None] | |
90 mean_error = mean_pred - fiber_fit.data | |
91 mean_rmse = np.sqrt(np.mean(mean_error ** 2, -1)) | |
92 # Compare the overall distribution of errors | |
93 # between these two alternative models of the ROI. | |
94 fig, ax = plt.subplots(1) | |
95 ax.hist(mean_rmse - model_rmse, bins=100, histtype='step') | |
96 ax.text(0.2, 0.9,'Median RMSE, mean model: %.2f' % np.median(mean_rmse), horizontalalignment='left', verticalalignment='center', transform=ax.transAxes) | |
97 ax.text(0.2, 0.8,'Median RMSE, LiFE: %.2f' % np.median(model_rmse), horizontalalignment='left', verticalalignment='center', transform=ax.transAxes) | |
98 ax.set_xlabel('RMS Error') | |
99 ax.set_ylabel('# voxels') | |
100 fig.savefig(args.output_error_histograms) | |
101 # Show the spatial distribution of the two error terms, | |
102 # and of the improvement with the model fit: | |
103 vol_model = np.ones(data.shape[:3]) * np.nan | |
104 vol_model[fiber_fit.vox_coords[:, 0], fiber_fit.vox_coords[:, 1], fiber_fit.vox_coords[:, 2]] = model_rmse | |
105 vol_mean = np.ones(data.shape[:3]) * np.nan | |
106 vol_mean[fiber_fit.vox_coords[:, 0], fiber_fit.vox_coords[:, 1], fiber_fit.vox_coords[:, 2]] = mean_rmse | |
107 vol_improve = np.ones(data.shape[:3]) * np.nan | |
108 vol_improve[fiber_fit.vox_coords[:, 0], fiber_fit.vox_coords[:, 1], fiber_fit.vox_coords[:, 2]] = mean_rmse - model_rmse | |
109 sl_idx = 49 | |
110 fig = plt.figure() | |
111 fig.subplots_adjust(left=0.05, right=0.95) | |
112 ax = AxesGrid(fig, 111, nrows_ncols = (1, 3), label_mode = "1", share_all = True, cbar_location="top", cbar_mode="each", cbar_size="10%", cbar_pad="5%") | |
113 ax[0].matshow(np.rot90(t1_data[sl_idx, :, :]), cmap=matplotlib.cm.bone) | |
114 im = ax[0].matshow(np.rot90(vol_model[sl_idx, :, :]), cmap=matplotlib.cm.hot) | |
115 ax.cbar_axes[0].colorbar(im) | |
116 ax[1].matshow(np.rot90(t1_data[sl_idx, :, :]), cmap=matplotlib.cm.bone) | |
117 im = ax[1].matshow(np.rot90(vol_mean[sl_idx, :, :]), cmap=matplotlib.cm.hot) | |
118 ax.cbar_axes[1].colorbar(im) | |
119 ax[2].matshow(np.rot90(t1_data[sl_idx, :, :]), cmap=matplotlib.cm.bone) | |
120 im = ax[2].matshow(np.rot90(vol_improve[sl_idx, :, :]), cmap=matplotlib.cm.RdBu) | |
121 ax.cbar_axes[2].colorbar(im) | |
122 for lax in ax: | |
123 lax.set_xticks([]) | |
124 lax.set_yticks([]) | |
125 fig.savefig(args.output_spatial_errors) |