Mercurial > repos > greg > ks_distribution
changeset 4:a91bd45aa8b1 draft
Uploaded
author | greg |
---|---|
date | Wed, 31 May 2017 07:55:32 -0400 |
parents | e293a5736ae9 |
children | 145871acd103 |
files | ks_distribution.R |
diffstat | 1 files changed, 66 insertions(+), 51 deletions(-) [+] |
line wrap: on
line diff
--- a/ks_distribution.R Fri May 05 09:35:21 2017 -0400 +++ b/ks_distribution.R Wed May 31 07:55:32 2017 -0400 @@ -17,8 +17,8 @@ { # Get the max of the number_comp column. number_comp = components_data[, 3] - num_components <- max(number_comp, na.rm=TRUE); - num_components + num_components <- max(number_comp, na.rm=TRUE) + return(num_components) } get_pi_mu_var = function(components_data, num_components) @@ -26,90 +26,105 @@ # FixMe: enhance this to generically handle any integer value for num_components. if (num_components == 1) { - pi <- c(components_data[1, 9]); - mu <- c(components_data[1, 7]); - var <- c(components_data[1, 8]); + pi <- c(components_data[1, 9]) + mu <- c(components_data[1, 7]) + var <- c(components_data[1, 8]) } else if (num_components == 2) { - pi <- c(components_data[2, 9], components_data[3, 9]); - mu <- c(components_data[2, 7], components_data[3, 7]); - var <- c(components_data[2, 8], components_data[3, 8]); + pi <- c(components_data[2, 9], components_data[3, 9]) + mu <- c(components_data[2, 7], components_data[3, 7]) + var <- c(components_data[2, 8], components_data[3, 8]) } else if (num_components == 3) { - pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]); - mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]); - var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]); + pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]) + mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]) + var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]) } else if (num_components == 4) { - pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]); - mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]); - var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]); + pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]) + mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]) + var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]) } - return = c(pi, mu, var) - return + else if (num_components == 5) + { + pi <- c(components_data[11, 9], components_data[12, 9], components_data[13, 9], components_data[14, 9], components_data[15, 9]) + mu <- c(components_data[11, 7], components_data[12, 7], components_data[13, 7], components_data[14, 7], components_data[15, 7]) + var <- c(components_data[11, 8], components_data[12, 8], components_data[13, 8], components_data[14, 8], components_data[15, 8]) + } + else if (num_components == 6) + { + pi <- c(components_data[16, 9], components_data[17, 9], components_data[18, 9], components_data[19, 9], components_data[20, 9], components_data[21, 9]) + mu <- c(components_data[16, 7], components_data[17, 7], components_data[18, 7], components_data[19, 7], components_data[20, 7], components_data[21, 7]) + var <- c(components_data[16, 8], components_data[17, 8], components_data[18, 8], components_data[19, 8], components_data[20, 8], components_data[21, 8]) + } + results = c(pi, mu, var) + return(results) } -plot_ks<-function(kaks_input, output, pi, mu, var) +plot_ks<-function(kaks_input, output, pi, mu, var, max_ks) { # Start PDF device driver to save charts to output. pdf(file=output, bg="white") + kaks <- read.table(file=kaks_input, header=T) + max_ks <- max(kaks$Ks, na.rm=TRUE) # Change bin width - bin <- 0.05 * seq(0, 40); - kaks <- read.table(file=kaks_input, header=T); - kaks <- kaks[kaks$Ks<2,]; - h.kst <- hist(kaks$Ks, breaks=bin, plot=F); - nc <- h.kst$counts; - vx <- h.kst$mids; - ntot <- sum(nc); + max_bin_range <- as.integer(max_ks / 0.05) + bin <- 0.05 * seq(0, max_bin_range) + kaks <- kaks[kaks$Ks<max_ks,]; + h.kst <- hist(kaks$Ks, breaks=bin, plot=F) + nc <- h.kst$counts + vx <- h.kst$mids + ntot <- sum(nc) # Set margin for plot bottom, left top, right. - par(mai=c(0.5, 0.5, 0, 0)); + par(mai=c(0.5, 0.5, 0, 0)) # Plot dimension in inches. - par(pin=c(2.5, 2.5)); - g <- calculate_fitted_density(pi, mu, var); - h <- ntot * 2.5 / sum(g); - vx <- seq(1, 100) * 0.02; - ymax <- max(nc) + 5; - barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax)); + par(pin=c(2.5, 2.5)) + g <- calculate_fitted_density(pi, mu, var) + h <- ntot * 2.5 / sum(g) + vx <- seq(1, 100) * 0.02 + ymax <- max(nc) + 5 + barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0, max_ks), ylim=c(0, ymax), col="lightpink1", border="lightpink3") # Add x-axis. - axis(1); - color <- c('green', 'blue', 'black', 'red'); + axis(1) + color <- c('red', 'yellow','green','black','blue', 'darkorange' ) for (i in 1:length(mu)) { - lines(vx, g[,i] * h, lwd=2, col=color[i]); + lines(vx, g[,i] * h, lwd=2, col=color[i]) } -}; +} calculate_fitted_density <- function(pi, mu, var) { - comp <- length(pi); - var <- var/mu^2; - mu <- log(mu); - #calculate lognormal density - vx <- seq(1, 100) * 0.02; - fx <- matrix(0, 100, comp); + comp <- length(pi) + var <- var/mu^2 + mu <- log(mu) + # Calculate lognormal density. + vx <- seq(1, 100) * 0.02 + fx <- matrix(0, 100, comp) for (i in 1:100) { for (j in 1:comp) { - fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))); - }; - }; - fx; + fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))) + if (is.nan(fx[i,j])) fx[i,j]<-0 + } + } + return(fx) } # Read in the components data. -components_data <- read.delim(opt$components_input, header=TRUE); +components_data <- read.delim(opt$components_input, header=TRUE) # Get the number of components. num_components <- get_num_components(components_data) # Set pi, mu, var. -items <- get_pi_mu_var(components_data, num_components); -pi <- items[1]; -mu <- items[2]; -var <- items[3]; +items <- get_pi_mu_var(components_data, num_components) +pi <- items[1:3] +mu <- items[4:6] +var <- items[7:9] # Plot the output. -plot_ks(opt$kaks_input, opt$output, pi, mu, var); +plot_ks(opt$kaks_input, opt$output, pi, mu, var, max_ks)