changeset 4:a91bd45aa8b1 draft

Uploaded
author greg
date Wed, 31 May 2017 07:55:32 -0400
parents e293a5736ae9
children 145871acd103
files ks_distribution.R
diffstat 1 files changed, 66 insertions(+), 51 deletions(-) [+]
line wrap: on
line diff
--- a/ks_distribution.R	Fri May 05 09:35:21 2017 -0400
+++ b/ks_distribution.R	Wed May 31 07:55:32 2017 -0400
@@ -17,8 +17,8 @@
 {
     # Get the max of the number_comp column.
     number_comp = components_data[, 3]
-    num_components <- max(number_comp, na.rm=TRUE);
-    num_components
+    num_components <- max(number_comp, na.rm=TRUE)
+    return(num_components)
 }
 
 get_pi_mu_var = function(components_data, num_components)
@@ -26,90 +26,105 @@
     # FixMe: enhance this to generically handle any integer value for num_components.
     if (num_components == 1)
     {
-        pi <- c(components_data[1, 9]);
-        mu <- c(components_data[1, 7]);
-        var <- c(components_data[1, 8]);
+        pi <- c(components_data[1, 9])
+        mu <- c(components_data[1, 7])
+        var <- c(components_data[1, 8])
     }
     else if (num_components == 2)
     {
-        pi <- c(components_data[2, 9], components_data[3, 9]);
-        mu <- c(components_data[2, 7], components_data[3, 7]);
-        var <- c(components_data[2, 8], components_data[3, 8]);
+        pi <- c(components_data[2, 9], components_data[3, 9])
+        mu <- c(components_data[2, 7], components_data[3, 7])
+        var <- c(components_data[2, 8], components_data[3, 8])
     }
     else if (num_components == 3)
     {
-        pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]);
-        mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]);
-        var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]);
+      pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9])
+      mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7])
+      var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8])
     }
     else if (num_components == 4)
     {
-        pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]);
-        mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]);
-        var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]);
+        pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9])
+        mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7])
+        var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8])
     }
-    return = c(pi, mu, var)
-    return
+    else if (num_components == 5)
+    {
+        pi <- c(components_data[11, 9], components_data[12, 9], components_data[13, 9], components_data[14, 9], components_data[15, 9])
+        mu <- c(components_data[11, 7], components_data[12, 7], components_data[13, 7], components_data[14, 7], components_data[15, 7])
+        var <- c(components_data[11, 8], components_data[12, 8], components_data[13, 8], components_data[14, 8], components_data[15, 8])
+    }
+    else if (num_components == 6)
+    {
+        pi <- c(components_data[16, 9], components_data[17, 9], components_data[18, 9], components_data[19, 9], components_data[20, 9], components_data[21, 9])
+        mu <- c(components_data[16, 7], components_data[17, 7], components_data[18, 7], components_data[19, 7], components_data[20, 7], components_data[21, 7])
+        var <- c(components_data[16, 8], components_data[17, 8], components_data[18, 8], components_data[19, 8], components_data[20, 8], components_data[21, 8])
+    }
+    results = c(pi, mu, var)
+    return(results)
 }
 
-plot_ks<-function(kaks_input, output, pi, mu, var)
+plot_ks<-function(kaks_input, output, pi, mu, var, max_ks)
 {
     # Start PDF device driver to save charts to output.
     pdf(file=output, bg="white")
+    kaks <- read.table(file=kaks_input, header=T)
+    max_ks <- max(kaks$Ks, na.rm=TRUE)
     # Change bin width
-    bin <- 0.05 * seq(0, 40);
-    kaks <- read.table(file=kaks_input, header=T);
-    kaks <- kaks[kaks$Ks<2,];
-    h.kst <- hist(kaks$Ks, breaks=bin, plot=F);
-    nc <- h.kst$counts;
-    vx <- h.kst$mids;
-    ntot <- sum(nc);
+    max_bin_range <- as.integer(max_ks / 0.05)
+    bin <- 0.05 * seq(0, max_bin_range)
+    kaks <- kaks[kaks$Ks<max_ks,];
+    h.kst <- hist(kaks$Ks, breaks=bin, plot=F)
+    nc <- h.kst$counts
+    vx <- h.kst$mids
+    ntot <- sum(nc)
     # Set margin for plot bottom, left top, right.
-    par(mai=c(0.5, 0.5, 0, 0));
+    par(mai=c(0.5, 0.5, 0, 0))
     # Plot dimension in inches.
-    par(pin=c(2.5, 2.5));
-    g <- calculate_fitted_density(pi, mu, var);
-    h <- ntot * 2.5 / sum(g);
-    vx <- seq(1, 100) * 0.02;
-    ymax <- max(nc) + 5;
-    barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax));
+    par(pin=c(2.5, 2.5))
+    g <- calculate_fitted_density(pi, mu, var)
+    h <- ntot * 2.5 / sum(g)
+    vx <- seq(1, 100) * 0.02
+    ymax <- max(nc) + 5
+    barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0, max_ks), ylim=c(0, ymax), col="lightpink1", border="lightpink3")
     # Add x-axis.
-    axis(1);
-    color <- c('green', 'blue', 'black', 'red');
+    axis(1)
+    color <- c('red', 'yellow','green','black','blue', 'darkorange' )
     for (i in 1:length(mu))
     {
-       lines(vx, g[,i] * h, lwd=2, col=color[i]);
+       lines(vx, g[,i] * h, lwd=2, col=color[i])
     }
-};
+}
 
 calculate_fitted_density <- function(pi, mu, var)
 {
-    comp <- length(pi);
-    var <- var/mu^2;
-    mu <- log(mu);
-    #calculate lognormal density
-    vx <- seq(1, 100) * 0.02;
-    fx <- matrix(0, 100, comp);
+    comp <- length(pi)
+    var <- var/mu^2
+    mu <- log(mu)
+    # Calculate lognormal density.
+    vx <- seq(1, 100) * 0.02
+    fx <- matrix(0, 100, comp)
     for (i in 1:100)
     {
         for (j in 1:comp)
         {
-           fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j])));
-        };
-     };
-    fx;
+           fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j])))
+           if (is.nan(fx[i,j])) fx[i,j]<-0
+        }
+     }
+    return(fx)
 }
 
 # Read in the components data.
-components_data <- read.delim(opt$components_input, header=TRUE);
+components_data <- read.delim(opt$components_input, header=TRUE)
 # Get the number of components.
 num_components <- get_num_components(components_data)
 
 # Set pi, mu, var.
-items <- get_pi_mu_var(components_data, num_components);
-pi <- items[1];
-mu <- items[2];
-var <- items[3];
+items <- get_pi_mu_var(components_data, num_components)
+pi <- items[1:3]
+mu <- items[4:6]
+var <- items[7:9]
 
 # Plot the output.
-plot_ks(opt$kaks_input, opt$output, pi, mu, var);
+plot_ks(opt$kaks_input, opt$output, pi, mu, var, max_ks)