Mercurial > repos > greg > ks_distribution
view ks_distribution.R @ 30:62bb454ad4e9 draft
Uploaded
author | greg |
---|---|
date | Mon, 26 Jun 2017 10:28:20 -0400 |
parents | 9b6252925ccf |
children | 812f09b96a62 |
line wrap: on
line source
#!/usr/bin/env Rscript suppressPackageStartupMessages(library("optparse")) suppressPackageStartupMessages(library("rjson")) option_list <- list( make_option(c("-c", "--components_input"), action="store", dest="components_input", help="Ks significant components input dataset"), make_option(c("-k", "--kaks_input"), action="store", dest="kaks_input", help="KaKs analysis input dataset"), make_option(c("-n", "--num_comp"), action="store", dest="num_comp", type="integer", help="Number of significant components in the Ks distribution"), make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"), make_option(c("-r", "--colors"), action="store", default=NA, help="List of component colors") ) parser <- OptionParser(usage="%prog [options] file", option_list=option_list) args <- parse_args(parser, positional_arguments=TRUE) opt <- args$options get_pi_mu_var = function(components_data, number_comp) { # FixMe: enhance this to generically handle any integer value for number_comp. if (number_comp == 1) { pi <- c(components_data[1, 9]) mu <- c(components_data[1, 7]) var <- c(components_data[1, 8]) } else if (number_comp == 2) { pi <- c(components_data[2, 9], components_data[3, 9]) mu <- c(components_data[2, 7], components_data[3, 7]) var <- c(components_data[2, 8], components_data[3, 8]) } else if (number_comp == 3) { pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]) mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]) var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]) } else if (number_comp == 4) { pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]) mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]) var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]) } else if (number_comp == 5) { pi <- c(components_data[11, 9], components_data[12, 9], components_data[13, 9], components_data[14, 9], components_data[15, 9]) mu <- c(components_data[11, 7], components_data[12, 7], components_data[13, 7], components_data[14, 7], components_data[15, 7]) var <- c(components_data[11, 8], components_data[12, 8], components_data[13, 8], components_data[14, 8], components_data[15, 8]) } else if (number_comp == 6) { pi <- c(components_data[16, 9], components_data[17, 9], components_data[18, 9], components_data[19, 9], components_data[20, 9], components_data[21, 9]) mu <- c(components_data[16, 7], components_data[17, 7], components_data[18, 7], components_data[19, 7], components_data[20, 7], components_data[21, 7]) var <- c(components_data[16, 8], components_data[17, 8], components_data[18, 8], components_data[19, 8], components_data[20, 8], components_data[21, 8]) } results = c(pi, mu, var) return(results) } plot_ks<-function(kaks_input, number_comp, colors, output, pi, mu, var) { # Start PDF device driver to save charts to output. pdf(file=output, bg="white") kaks <- read.table(file=kaks_input, header=T) max_ks <- max(kaks$Ks, na.rm=TRUE) # Change bin width max_bin_range <- as.integer(max_ks / 0.05) bin <- 0.05 * seq(0, (max_bin_range + 1 )) kaks <- kaks[kaks$Ks<max_ks,] h.kst <- hist(kaks$Ks, breaks=bin, plot=F) nc <- h.kst$counts vx <- h.kst$mids ntot <- sum(nc) # Set margin for plot bottom, left top, right. par(mai=c(0.5, 0.5, 0, 0)) # Plot dimension in inches. par(pin=c(3.0, 3.0)) g <- calculate_fitted_density(pi, mu, var, max_ks) h <- ntot * 1.5 / sum(g) vx <- seq(1, 100) * (max_ks / 100) ymax <- max(nc) barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0, max_ks), ylim=c(0, ymax), col="lightpink1", border="lightpink3") # Add x-axis. axis(1) if (length(colors) == 0) { color <- c('red', 'yellow', 'green', 'black', 'blue', 'darkorange') } else { # Handle specified colors for components. cStr <- unlist(colors) color <- c() items <- strsplit(cStr, ",") for (item in items) { color <- c(color, item) } num_colors_specified = length(color) if (num_colors_specified < number_comp) { for (i in num_colors_specified:number_comp) { if (!any(color=='red')) { color <- c(color, 'red') } else if (!any(color=='yellow')) { color <- c(color, 'yellow') } else if (!any(color=='green')) { color <- c(color, 'green') } else if (!any(color=='black')) { color <- c(color, 'black') } else if (!any(color=='blue')) { color <- c(color, 'blue') } else { color <- c(color, 'darkorange') } } } } for (i in 1:length(mu)) { lines(vx, g[,i] * h, lwd=2, col=color[i]) } } calculate_fitted_density <- function(pi, mu, var, max_ks) { comp <- length(pi) var <- var/mu^2 mu <- log(mu) # Calculate lognormal density. vx <- seq(1, 100) * (max_ks / 100) fx <- matrix(0, 100, comp) for (i in 1:100) { for (j in 1:comp) { fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))) if (is.nan(fx[i,j])) fx[i,j]<-0 } } return(fx) } # Handle colors for components. if (is.na(opt$colors)) { # Randomly specify colors for components. specified_colors <- c('red', 'yellow', 'green', 'black', 'blue', 'darkorange') } else { # Handle selected colors for components. parser <- newJSONParser() parser$addData(opt$colors) raw_colors <- parser$getObject() specified_colors <- c() for (raw_color in raw_colors) { specified_colors <- c(specified_colors, raw_color) } } # Read in the components data. components_data <- read.delim(opt$components_input, header=TRUE) number_comp <- opt$number_comp # Set pi, mu, var. items <- get_pi_mu_var(components_data, number_comp) if (number_comp == 1) { pi <- items[1] mu <- items[2] var <- items[3] } else if (number_comp == 2) { pi <- items[1:2] mu <- items[3:4] var <- items[5:6] } else if (number_comp == 3) { pi <- items[1:3] mu <- items[4:6] var <- items[7:9] } else if (number_comp == 4) { pi <- items[1:4] mu <- items[5:8] var <- items[9:12] } else if (number_comp == 5) { pi <- items[1:5] mu <- items[6:10] var <- items[11:15] } else if (number_comp == 6) { pi <- items[1:6] mu <- items[7:12] var <- items[13:18] } # Plot the output. plot_ks(opt$kaks_input, number_comp, specified_colors, opt$output, pi, mu, var)