changeset 5:8d18cb8396a7 draft default tip

Uploaded
author greg
date Thu, 16 Mar 2017 14:41:39 -0400
parents a419970e9c19
children
files kaks_analysis_barplot.R kaks_analysis_barplot.xml kaks_distribution.R kaks_distribution.xml
diffstat 4 files changed, 158 insertions(+), 158 deletions(-) [+]
line wrap: on
line diff
--- a/kaks_analysis_barplot.R	Wed Mar 08 14:07:30 2017 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,115 +0,0 @@
-#!/usr/bin/env Rscript
-
-suppressPackageStartupMessages(library("optparse"))
-
-option_list <- list(
-    make_option(c("-c", "--components_input"), action="store", dest="components_input", help="Ks significant components input dataset"),
-    make_option(c("-k", "--kaks_input"), action="store", dest="kaks_input", help="KaKs analysis input dataset"),
-    make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset")
-)
-
-parser <- OptionParser(usage="%prog [options] file", option_list=option_list)
-args <- parse_args(parser, positional_arguments=TRUE)
-opt <- args$options
-
-
-get_num_components = function(components_data)
-{
-    # Get the max of the number_comp column.
-    number_comp = components_data[, 3]
-    num_components <- max(number_comp, na.rm=TRUE);
-    num_components
-}
-
-get_pi_mu_var = function(components_data, num_components)
-{
-    # FixMe: enhance this to generically handle any integer value for num_components.
-    if (num_components == 1)
-    {
-        pi <- c(components_data[1, 9]);
-        mu <- c(components_data[1, 7]);
-        var <- c(components_data[1, 8]);
-    }
-    else if (num_components == 2)
-    {
-        pi <- c(components_data[2, 9], components_data[3, 9]);
-        mu <- c(components_data[2, 7], components_data[3, 7]);
-        var <- c(components_data[2, 8], components_data[3, 8]);
-    }
-    else if (num_components == 3)
-    {
-        pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]);
-        mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]);
-        var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]);
-    }
-    else if (num_components == 4)
-    {
-        pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]);
-        mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]);
-        var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]);
-    }
-    return = c(pi, mu, var)
-    return
-}
-
-plot_ks<-function(kaks_input, output, pi, mu, var)
-{
-    # Start PDF device driver to save charts to output.
-    pdf(file=output, bg="white")
-    # Change bin width
-    bin <- 0.05 * seq(0, 40);
-    kaks <- read.table(file=kaks_input, header=T);
-    kaks <- kaks[kaks$Ks<2,];
-    h.kst <- hist(kaks$Ks, breaks=bin, plot=F);
-    nc <- h.kst$counts;
-    vx <- h.kst$mids;
-    ntot <- sum(nc);
-    # Set margin for plot bottom, left top, right.
-    par(mai=c(0.5, 0.5, 0, 0));
-    # Plot dimension in inches.
-    par(pin=c(2.5, 2.5));
-    g <- calculate_fitted_density(pi, mu, var);
-    h <- ntot * 2.5 / sum(g);
-    vx <- seq(1, 100) * 0.02;
-    ymax <- max(nc) + 5;
-    barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax));
-    # Add x-axis.
-    axis(1);
-    color <- c('green', 'blue', 'black', 'red');
-    for (i in 1:length(mu))
-    {
-       lines(vx, g[,i] * h, lwd=2, col=color[i]);
-    }
-};
-
-calculate_fitted_density <- function(pi, mu, var)
-{
-    comp <- length(pi);
-    var <- var/mu^2;
-    mu <- log(mu);
-    #calculate lognormal density
-    vx <- seq(1, 100) * 0.02;
-    fx <- matrix(0, 100, comp);
-    for (i in 1:100)
-    {
-        for (j in 1:comp)
-        {
-           fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j])));
-        };
-     };
-    fx;
-}
-
-# Read in the components data.
-components_data <- read.delim(opt$components_input, header=TRUE);
-# Get the number of components.
-num_components <- get_num_components(components_data)
-
-# Set pi, mu, var.
-items <- get_pi_mu_var(components_data, num_components);
-pi <- items[1];
-mu <- items[2];
-var <- items[3];
-
-# Plot the output.
-plot_ks(opt$kaks_input, opt$output, pi, mu, var);
--- a/kaks_analysis_barplot.xml	Wed Mar 08 14:07:30 2017 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,43 +0,0 @@
-<tool id="kaks_barplot" name="Orthologous or paralogous KaKs barplot" version="1.0.0">
-    <description></description>
-    <requirements>
-         <requirement type="package" version="1.3.0">r-optparse</requirement>
-    </requirements>
-    <command>
-        <![CDATA[
-            Rscript $__tool_directory__/kaks_analysis_barplot.R
-            -k '${kaks}'
-            -c '${components}'
-            -o "$output"
-        ]]>
-    </command>
-    <inputs>
-        <param name="kaks" format="tabular" type="data" label="KaKs analysis file" />
-        <param name="components" format="tabular" type="data" label="Significant components in the ks distribution" />
-    </inputs>
-    <outputs>
-        <data name="output" format="pdf"/>
-    </outputs>
-    <tests>
-        <test>
-            <param name="kaks" value="kaks.tabular" ftype="tabular" />
-            <param name="components" value="components.tabular" ftype="tabular" />
-            <output name="output" file="output.pdf" ftype="pdf" compare="contains" />
-        </test>
-    </tests>
-    <help>
-**What it does**
- 
-Draws a barplot of the significant components in the ks distribution.
-    </help>
-    <citations>
-        <citation type="bibtex">
-            @unpublished{None,
-            author = {Eric Wafula},
-            title = {None},
-            year = {None},
-            url = {https://github.com/dePamphilis/PlantTribes}
-            }
-        </citation>
-    </citations>
-</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kaks_distribution.R	Thu Mar 16 14:41:39 2017 -0400
@@ -0,0 +1,115 @@
+#!/usr/bin/env Rscript
+
+suppressPackageStartupMessages(library("optparse"))
+
+option_list <- list(
+    make_option(c("-c", "--components_input"), action="store", dest="components_input", help="Ks significant components input dataset"),
+    make_option(c("-k", "--kaks_input"), action="store", dest="kaks_input", help="KaKs analysis input dataset"),
+    make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset")
+)
+
+parser <- OptionParser(usage="%prog [options] file", option_list=option_list)
+args <- parse_args(parser, positional_arguments=TRUE)
+opt <- args$options
+
+
+get_num_components = function(components_data)
+{
+    # Get the max of the number_comp column.
+    number_comp = components_data[, 3]
+    num_components <- max(number_comp, na.rm=TRUE);
+    num_components
+}
+
+get_pi_mu_var = function(components_data, num_components)
+{
+    # FixMe: enhance this to generically handle any integer value for num_components.
+    if (num_components == 1)
+    {
+        pi <- c(components_data[1, 9]);
+        mu <- c(components_data[1, 7]);
+        var <- c(components_data[1, 8]);
+    }
+    else if (num_components == 2)
+    {
+        pi <- c(components_data[2, 9], components_data[3, 9]);
+        mu <- c(components_data[2, 7], components_data[3, 7]);
+        var <- c(components_data[2, 8], components_data[3, 8]);
+    }
+    else if (num_components == 3)
+    {
+        pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]);
+        mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]);
+        var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]);
+    }
+    else if (num_components == 4)
+    {
+        pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]);
+        mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]);
+        var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]);
+    }
+    return = c(pi, mu, var)
+    return
+}
+
+plot_ks<-function(kaks_input, output, pi, mu, var)
+{
+    # Start PDF device driver to save charts to output.
+    pdf(file=output, bg="white")
+    # Change bin width
+    bin <- 0.05 * seq(0, 40);
+    kaks <- read.table(file=kaks_input, header=T);
+    kaks <- kaks[kaks$Ks<2,];
+    h.kst <- hist(kaks$Ks, breaks=bin, plot=F);
+    nc <- h.kst$counts;
+    vx <- h.kst$mids;
+    ntot <- sum(nc);
+    # Set margin for plot bottom, left top, right.
+    par(mai=c(0.5, 0.5, 0, 0));
+    # Plot dimension in inches.
+    par(pin=c(2.5, 2.5));
+    g <- calculate_fitted_density(pi, mu, var);
+    h <- ntot * 2.5 / sum(g);
+    vx <- seq(1, 100) * 0.02;
+    ymax <- max(nc) + 5;
+    barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax));
+    # Add x-axis.
+    axis(1);
+    color <- c('green', 'blue', 'black', 'red');
+    for (i in 1:length(mu))
+    {
+       lines(vx, g[,i] * h, lwd=2, col=color[i]);
+    }
+};
+
+calculate_fitted_density <- function(pi, mu, var)
+{
+    comp <- length(pi);
+    var <- var/mu^2;
+    mu <- log(mu);
+    #calculate lognormal density
+    vx <- seq(1, 100) * 0.02;
+    fx <- matrix(0, 100, comp);
+    for (i in 1:100)
+    {
+        for (j in 1:comp)
+        {
+           fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j])));
+        };
+     };
+    fx;
+}
+
+# Read in the components data.
+components_data <- read.delim(opt$components_input, header=TRUE);
+# Get the number of components.
+num_components <- get_num_components(components_data)
+
+# Set pi, mu, var.
+items <- get_pi_mu_var(components_data, num_components);
+pi <- items[1];
+mu <- items[2];
+var <- items[3];
+
+# Plot the output.
+plot_ks(opt$kaks_input, opt$output, pi, mu, var);
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kaks_distribution.xml	Thu Mar 16 14:41:39 2017 -0400
@@ -0,0 +1,43 @@
+<tool id="kaks_barplot" name="KaKsDistribution" version="1.0.0">
+    <description>plots synonymous (ks) distribution and fit significant component</description>
+    <requirements>
+         <requirement type="package" version="1.3.0">r-optparse</requirement>
+    </requirements>
+    <command>
+        <![CDATA[
+            Rscript $__tool_directory__/kaks_distribution.R
+            -k '${kaks}'
+            -c '${components}'
+            -o "$output"
+        ]]>
+    </command>
+    <inputs>
+        <param name="kaks" format="tabular" type="data" label="KaKs analysis file" />
+        <param name="components" format="tabular" type="data" label="Significant components in the ks distribution" />
+    </inputs>
+    <outputs>
+        <data name="output" format="pdf"/>
+    </outputs>
+    <tests>
+        <test>
+            <param name="kaks" value="kaks.tabular" ftype="tabular" />
+            <param name="components" value="components.tabular" ftype="tabular" />
+            <output name="output" file="output.pdf" ftype="pdf" compare="contains" />
+        </test>
+    </tests>
+    <help>
+**What it does**
+ 
+Draws a barplot of the significant components in the ks distribution.
+    </help>
+    <citations>
+        <citation type="bibtex">
+            @article{None,
+            journal = {None},
+            author = {1. Wafula EK},
+            title = {Manuscript in preparation},
+            year = {None},
+            url = {https://github.com/dePamphilis/PlantTribes},}
+        </citation>
+    </citations>
+</tool>