Mercurial > repos > greg > kaks_analysis_barplot
comparison kaks_analysis_barplot.R @ 3:9ec2b94ff094 draft
Uploaded
author | greg |
---|---|
date | Wed, 08 Mar 2017 13:57:03 -0500 |
parents | b4f599423810 |
children |
comparison
equal
deleted
inserted
replaced
2:b4f599423810 | 3:9ec2b94ff094 |
---|---|
1 #!/usr/bin/env Rscript | 1 #!/usr/bin/env Rscript |
2 | 2 |
3 suppressPackageStartupMessages(library("optparse")) | 3 suppressPackageStartupMessages(library("optparse")) |
4 | 4 |
5 option_list <- list( | 5 option_list <- list( |
6 make_option(c("-c", "--components", action="store", dest="components", help="Ks significant components input dataset"), | 6 make_option(c("-c", "--components_input"), action="store", dest="components_input", help="Ks significant components input dataset"), |
7 make_option(c("-o", "--output", action="store", dest="output", default=NULL, help="Output dataset"), | 7 make_option(c("-k", "--kaks_input"), action="store", dest="kaks_input", help="KaKs analysis input dataset"), |
8 make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset") | |
8 ) | 9 ) |
9 | 10 |
10 parser <- OptionParser(usage="%prog [options] file", option_list=option_list) | 11 parser <- OptionParser(usage="%prog [options] file", option_list=option_list) |
11 args <- parse_args(parser, positional_arguments=TRUE) | 12 args <- parse_args(parser, positional_arguments=TRUE) |
12 opt <- args$options | 13 opt <- args$options |
13 | 14 |
14 | 15 |
15 get_num_components=function(components_dataset) | 16 get_num_components = function(components_data) |
16 { | 17 { |
17 # Read in the components data. | |
18 components_data <- read.delim(components_dataset, header=TRUE); | |
19 # Get the max of the number_comp column. | 18 # Get the max of the number_comp column. |
20 num_components <- max(components_data[3, ], na.rm=TRUE); | 19 number_comp = components_data[, 3] |
21 return = c(components_data, num_components) | 20 num_components <- max(number_comp, na.rm=TRUE); |
22 return | 21 num_components |
23 } | 22 } |
24 | 23 |
25 get_pi_mu_var = function(components_data, num_components) { | 24 get_pi_mu_var = function(components_data, num_components) |
25 { | |
26 # FixMe: enhance this to generically handle any integer value for num_components. | 26 # FixMe: enhance this to generically handle any integer value for num_components. |
27 if (num_components == 1) { | 27 if (num_components == 1) |
28 { | |
28 pi <- c(components_data[1, 9]); | 29 pi <- c(components_data[1, 9]); |
29 mu <- c(components_data[1, 7]); | 30 mu <- c(components_data[1, 7]); |
30 var <- c(components_data[1, 8]); | 31 var <- c(components_data[1, 8]); |
31 } else if (num_components == 2) { | 32 } |
33 else if (num_components == 2) | |
34 { | |
32 pi <- c(components_data[2, 9], components_data[3, 9]); | 35 pi <- c(components_data[2, 9], components_data[3, 9]); |
33 mu <- c(components_data[2, 7], components_data[3, 7]); | 36 mu <- c(components_data[2, 7], components_data[3, 7]); |
34 var <- c(components_data[2, 8], components_data[3, 8]); | 37 var <- c(components_data[2, 8], components_data[3, 8]); |
35 } else if (num_components == 3) { | 38 } |
39 else if (num_components == 3) | |
40 { | |
36 pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]); | 41 pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]); |
37 mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]); | 42 mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]); |
38 var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]); | 43 var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]); |
39 } else if (num_components == 4) { | 44 } |
45 else if (num_components == 4) | |
46 { | |
40 pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]); | 47 pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]); |
41 mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]); | 48 mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]); |
42 var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]); | 49 var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]); |
50 } | |
43 return = c(pi, mu, var) | 51 return = c(pi, mu, var) |
44 return | 52 return |
45 } | 53 } |
46 | 54 |
47 plot_ks<-function(ksfile, pi, mu, var) { | 55 plot_ks<-function(kaks_input, output, pi, mu, var) |
48 #change bin width | 56 { |
49 bin <- 0.05 * seq(0, 40); | 57 # Start PDF device driver to save charts to output. |
50 kaks <- read.table(file=ksfile, header=T); | 58 pdf(file=output, bg="white") |
51 kaks <- kaks[kaks$Ks<2,]; | 59 # Change bin width |
52 h.kst <- hist(kaks$Ks, breaks=bin, plot=F); | 60 bin <- 0.05 * seq(0, 40); |
53 nc <- h.kst$counts; | 61 kaks <- read.table(file=kaks_input, header=T); |
54 vx <- h.kst$mids; | 62 kaks <- kaks[kaks$Ks<2,]; |
55 ntot <- sum(nc); | 63 h.kst <- hist(kaks$Ks, breaks=bin, plot=F); |
56 # Set margin for plot bottom, left top, right. | 64 nc <- h.kst$counts; |
57 par(mai=c(0.5, 0.5, 0, 0)); | 65 vx <- h.kst$mids; |
58 # Plot dimension in inches. | 66 ntot <- sum(nc); |
59 par(pin=c(2.5, 2.5)); | 67 # Set margin for plot bottom, left top, right. |
60 g <- calculate_fitted_density(pi, mu, var); | 68 par(mai=c(0.5, 0.5, 0, 0)); |
61 h <- ntot * 2.5 / sum(g); | 69 # Plot dimension in inches. |
62 vx <- seq(1, 100) * 0.02; | 70 par(pin=c(2.5, 2.5)); |
63 ymax <- max(nc) + 5; | 71 g <- calculate_fitted_density(pi, mu, var); |
64 barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax)); | 72 h <- ntot * 2.5 / sum(g); |
65 # Add x-axis. | 73 vx <- seq(1, 100) * 0.02; |
66 axis(1); | 74 ymax <- max(nc) + 5; |
67 color <- c('green', 'blue', 'black', 'red'); | 75 barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax)); |
68 for (i in 1:length(mu)) { | 76 # Add x-axis. |
69 lines(vx, g[,i] * h, lwd=2, col=color[i]); | 77 axis(1); |
70 } | 78 color <- c('green', 'blue', 'black', 'red'); |
79 for (i in 1:length(mu)) | |
80 { | |
81 lines(vx, g[,i] * h, lwd=2, col=color[i]); | |
82 } | |
71 }; | 83 }; |
72 | 84 |
73 calculate_fitted_density <- function(pi, mu, var) { | 85 calculate_fitted_density <- function(pi, mu, var) |
74 comp <- length(pi); | 86 { |
75 var <- var/mu^2; | 87 comp <- length(pi); |
76 mu <- log(mu);; | 88 var <- var/mu^2; |
77 #calculate lognormal density | 89 mu <- log(mu); |
78 vx <- seq(1, 100) * 0.02; | 90 #calculate lognormal density |
79 fx <- matrix(0, 100, comp); | 91 vx <- seq(1, 100) * 0.02; |
80 for (i in 1:100) { | 92 fx <- matrix(0, 100, comp); |
81 for (j in 1:comp) { | 93 for (i in 1:100) |
82 fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))); | 94 { |
83 }; | 95 for (j in 1:comp) |
84 }; | 96 { |
85 fx; | 97 fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))); |
98 }; | |
99 }; | |
100 fx; | |
86 } | 101 } |
87 | 102 |
88 # Read in the components data and get the number of components. | 103 # Read in the components data. |
89 items <- get_num_components(opt$components) | 104 components_data <- read.delim(opt$components_input, header=TRUE); |
90 components_data <- items[1] | 105 # Get the number of components. |
91 num_components <- items[2] | 106 num_components <- get_num_components(components_data) |
92 | |
93 # Set output file name. | |
94 if (is.null(opt$output)) { | |
95 # Name the output file based on the name of the | |
96 # input file, properly handling full path if passed. | |
97 input_filename = basename(opt$components) | |
98 items = strsplit(input_filename, ".") | |
99 output_filename <- paste(items[1], ".components.", num_components, ".pdf") | |
100 } else { | |
101 output_filename <- opt$output | |
102 } | |
103 | 107 |
104 # Set pi, mu, var. | 108 # Set pi, mu, var. |
105 items <- get_pi_mu_var(components_data, num_components) | 109 items <- get_pi_mu_var(components_data, num_components); |
106 pi <- items[1] | 110 pi <- items[1]; |
107 mu <- items[2] | 111 mu <- items[2]; |
108 var <- items[3] | 112 var <- items[3]; |
109 | 113 |
110 # Plot the output. | 114 # Plot the output. |
111 plot_ks(output_filename, pi, mu, var) | 115 plot_ks(opt$kaks_input, opt$output, pi, mu, var); |