Mercurial > repos > greg > kaks_analysis_barplot
comparison kaks_distribution.R @ 5:8d18cb8396a7 draft default tip
Uploaded
| author | greg |
|---|---|
| date | Thu, 16 Mar 2017 14:41:39 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 4:a419970e9c19 | 5:8d18cb8396a7 |
|---|---|
| 1 #!/usr/bin/env Rscript | |
| 2 | |
| 3 suppressPackageStartupMessages(library("optparse")) | |
| 4 | |
| 5 option_list <- list( | |
| 6 make_option(c("-c", "--components_input"), action="store", dest="components_input", help="Ks significant components input dataset"), | |
| 7 make_option(c("-k", "--kaks_input"), action="store", dest="kaks_input", help="KaKs analysis input dataset"), | |
| 8 make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset") | |
| 9 ) | |
| 10 | |
| 11 parser <- OptionParser(usage="%prog [options] file", option_list=option_list) | |
| 12 args <- parse_args(parser, positional_arguments=TRUE) | |
| 13 opt <- args$options | |
| 14 | |
| 15 | |
| 16 get_num_components = function(components_data) | |
| 17 { | |
| 18 # Get the max of the number_comp column. | |
| 19 number_comp = components_data[, 3] | |
| 20 num_components <- max(number_comp, na.rm=TRUE); | |
| 21 num_components | |
| 22 } | |
| 23 | |
| 24 get_pi_mu_var = function(components_data, num_components) | |
| 25 { | |
| 26 # FixMe: enhance this to generically handle any integer value for num_components. | |
| 27 if (num_components == 1) | |
| 28 { | |
| 29 pi <- c(components_data[1, 9]); | |
| 30 mu <- c(components_data[1, 7]); | |
| 31 var <- c(components_data[1, 8]); | |
| 32 } | |
| 33 else if (num_components == 2) | |
| 34 { | |
| 35 pi <- c(components_data[2, 9], components_data[3, 9]); | |
| 36 mu <- c(components_data[2, 7], components_data[3, 7]); | |
| 37 var <- c(components_data[2, 8], components_data[3, 8]); | |
| 38 } | |
| 39 else if (num_components == 3) | |
| 40 { | |
| 41 pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]); | |
| 42 mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]); | |
| 43 var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]); | |
| 44 } | |
| 45 else if (num_components == 4) | |
| 46 { | |
| 47 pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]); | |
| 48 mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]); | |
| 49 var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]); | |
| 50 } | |
| 51 return = c(pi, mu, var) | |
| 52 return | |
| 53 } | |
| 54 | |
| 55 plot_ks<-function(kaks_input, output, pi, mu, var) | |
| 56 { | |
| 57 # Start PDF device driver to save charts to output. | |
| 58 pdf(file=output, bg="white") | |
| 59 # Change bin width | |
| 60 bin <- 0.05 * seq(0, 40); | |
| 61 kaks <- read.table(file=kaks_input, header=T); | |
| 62 kaks <- kaks[kaks$Ks<2,]; | |
| 63 h.kst <- hist(kaks$Ks, breaks=bin, plot=F); | |
| 64 nc <- h.kst$counts; | |
| 65 vx <- h.kst$mids; | |
| 66 ntot <- sum(nc); | |
| 67 # Set margin for plot bottom, left top, right. | |
| 68 par(mai=c(0.5, 0.5, 0, 0)); | |
| 69 # Plot dimension in inches. | |
| 70 par(pin=c(2.5, 2.5)); | |
| 71 g <- calculate_fitted_density(pi, mu, var); | |
| 72 h <- ntot * 2.5 / sum(g); | |
| 73 vx <- seq(1, 100) * 0.02; | |
| 74 ymax <- max(nc) + 5; | |
| 75 barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax)); | |
| 76 # Add x-axis. | |
| 77 axis(1); | |
| 78 color <- c('green', 'blue', 'black', 'red'); | |
| 79 for (i in 1:length(mu)) | |
| 80 { | |
| 81 lines(vx, g[,i] * h, lwd=2, col=color[i]); | |
| 82 } | |
| 83 }; | |
| 84 | |
| 85 calculate_fitted_density <- function(pi, mu, var) | |
| 86 { | |
| 87 comp <- length(pi); | |
| 88 var <- var/mu^2; | |
| 89 mu <- log(mu); | |
| 90 #calculate lognormal density | |
| 91 vx <- seq(1, 100) * 0.02; | |
| 92 fx <- matrix(0, 100, comp); | |
| 93 for (i in 1:100) | |
| 94 { | |
| 95 for (j in 1:comp) | |
| 96 { | |
| 97 fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))); | |
| 98 }; | |
| 99 }; | |
| 100 fx; | |
| 101 } | |
| 102 | |
| 103 # Read in the components data. | |
| 104 components_data <- read.delim(opt$components_input, header=TRUE); | |
| 105 # Get the number of components. | |
| 106 num_components <- get_num_components(components_data) | |
| 107 | |
| 108 # Set pi, mu, var. | |
| 109 items <- get_pi_mu_var(components_data, num_components); | |
| 110 pi <- items[1]; | |
| 111 mu <- items[2]; | |
| 112 var <- items[3]; | |
| 113 | |
| 114 # Plot the output. | |
| 115 plot_ks(opt$kaks_input, opt$output, pi, mu, var); |
