Mercurial > repos > greg > insect_phenology_model
changeset 122:8946ddb9d72c draft
Uploaded
author | greg |
---|---|
date | Thu, 31 May 2018 13:09:32 -0400 |
parents | da67a24b04ba |
children | e69e30d853fb |
files | insect_phenology_model.R |
diffstat | 1 files changed, 289 insertions(+), 117 deletions(-) [+] |
line wrap: on
line diff
--- a/insect_phenology_model.R Thu May 31 13:09:22 2018 -0400 +++ b/insect_phenology_model.R Thu May 31 13:09:32 2018 -0400 @@ -33,10 +33,11 @@ args <- parse_args(parser, positional_arguments=TRUE); opt <- args$options; -add_daylight_length = function(temperature_data_frame, num_rows) { - # Return a vector of daylight length (photoperido profile) for - # the number of days specified in the input_ytd temperature data - # (from Forsythe 1995). +add_daylight_length = function(temperature_data_frame) { + # Return temperature_data_frame with an added column + # of daylight length (photoperido profile). + num_rows = dim(temperature_data_frame)[1]; + # From Forsythe 1995. p = 0.8333; latitude = temperature_data_frame$LATITUDE[1]; daylight_length_vector = NULL; @@ -70,6 +71,19 @@ return(date_interval_rows); } +from_30_year_normals = function(temperature_data_frame, norm_data_frame, start_date_doy, end_date_doy) { + # The data we want is fully contained within the 30 year normals data. + first_norm_row = which(norm_data_frame$DOY==start_date_doy); + last_norm_row = which(norm_data_frame$DOY==end_date_doy); + norm_data_frame_rows = last_norm_row - first_norm_row; + j = 0; + for (i in first_norm_row:last_norm_row) { + j = j + 1; + temperature_data_frame[j,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); + } + return (temperature_data_frame); +} + get_file_path = function(life_stage, base_name, life_stage_nymph=NULL, life_stage_adult=NULL) { if (!is.null(life_stage_nymph)) { lsi = get_life_stage_index(life_stage, life_stage_nymph=life_stage_nymph); @@ -255,21 +269,37 @@ } } -get_x_axis_ticks_and_labels = function(temperature_data_frame, num_rows, start_doy_ytd, end_doy_ytd) { - # Keep track of the years to see if spanning years. +get_x_axis_ticks_and_labels = function(temperature_data_frame, prepend_end_doy_norm, append_start_doy_norm, restricted_date_interval) { + # Generate a list of ticks and labels for plotting the + # x axis. There are several scenarios that affect this. + # 1. If restricted_date_interval is TRUE: + # a. + if (prepend_end_doy_norm > 0) { + prepend_end_norm_row = which(temperature_data_frame$DOY==prepend_end_doy_norm); + } else { + prepend_end_norm_row = 0; + } + if (append_start_doy_norm > 0) { + append_start_norm_row = which(temperature_data_frame$DOY==append_start_doy_norm); + } else { + append_start_norm_row = 0; + } + num_rows = dim(temperature_data_frame)[1]; month_labels = list(); ticks = list(); current_month_label = NULL; last_tick = 0; for (i in 1:num_rows) { - if (start_doy_ytd > 1 & i==start_doy_ytd-1) { + # We're plotting the entire year, so ticks will + # occur on Sundays and the first of each month. + if (i == prepend_end_norm_row) { # Add a tick for the end of the 30 year normnals data # that was prepended to the year-to-date data. tick_index = get_tick_index(i, last_tick, ticks, month_labels) ticks[tick_index] = i; month_labels[tick_index] = "End prepended 30 year normals"; last_tick = i; - } else if (end_doy_ytd > 0 & i==end_doy_ytd+1) { + } else if (i == append_start_doy_norm) { # Add a tick for the start of the 30 year normnals data # that was appended to the year-to-date data. tick_index = get_tick_index(i, last_tick, ticks, month_labels) @@ -291,7 +321,7 @@ month = items[2]; month_label = month.abb[as.integer(month)]; if (!identical(current_month_label, month_label)) { - # Add an x-axis tick for the month. + # Add a tick for the month. tick_index = get_tick_index(i, last_tick, ticks, month_labels) ticks[tick_index] = i; month_labels[tick_index] = month_label; @@ -300,14 +330,22 @@ } tick_index = get_tick_index(i, last_tick, ticks, month_labels) if (!is.null(tick_index)) { - # Get the day. - day = weekdays(as.Date(date)); - if (day=="Sunday") { - # Add an x-axis tick if we're on a Sunday. + if (restricted_date_interval) { + # Add a tick for every day. ticks[tick_index] = i; # Add a blank month label so it is not displayed. month_labels[tick_index] = ""; last_tick = i; + } else { + # Get the day. + day = weekdays(as.Date(date)); + if (day=="Sunday") { + # Add a tick if we're on a Sunday. + ticks[tick_index] = i; + # Add a blank month label so it is not displayed. + month_labels[tick_index] = ""; + last_tick = i; + } } } } @@ -360,23 +398,85 @@ return(mortality.probability); } -parse_input_data = function(input_ytd, input_norm, num_days, location, start_date, end_date) { +parse_input_data = function(input_ytd, input_norm, location, start_date, end_date) { + # The end DOY for norm data prepended to ytd data. + prepend_end_doy_norm = 0; + # The start DOY for norm data appended to ytd data. + append_start_doy_norm = 0; if (is.null(input_ytd)) { - # We're analysing only the 30 year normals data, so create an empty + # We're processing only the 30 year normals data. + processing_year_to_date_data = FALSE; + } else { + processing_year_to_date_data = TRUE; + } + if (is.null(start_date) && is.null(end_date)) { + # We're processing the entire year, possibly merging + # data from input_norm with data from input_ytd. + restricted_date_interval = FALSE; + } else { + restricted_date_interval = TRUE; + # Get the DOY for start_date and end_date. + start_date_doy = strftime(start_date, format="%j"); + end_date_doy = strftime(end_date, format="%j"); + } + # Read the input_norm temperature datafile into a data frame. + # The input_norm data has the following 10 columns: + # STATIONID, LATITUDE, LONGITUDE, ELEV_M, NAME, ST, MMDD, DOY, TMIN, TMAX + norm_data_frame = read.csv(file=input_norm, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=","); + # Set the norm_data_frame column names for access. + colnames(norm_data_frame) = c("STATIONID", "LATITUDE","LONGITUDE", "ELEV_M", "NAME", "ST", "MMDD", "DOY", "TMIN", "TMAX"); + if (processing_year_to_date_data) { + # Read the input_ytd temperature data file into a data frame. + # The input_ytd data has the following 6 columns: + # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX + temperature_data_frame = read.csv(file=input_ytd, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=","); + # Set the temperature_data_frame column names for access. + colnames(temperature_data_frame) = c("LATITUDE", "LONGITUDE", "DATE", "DOY", "TMIN", "TMAX"); + if (restricted_date_interval) { + # We're plotting a date interval. + start_date_ytd_row = which(temperature_data_frame$DATE==start_date); + if (start_date_ytd_row > 0) { + # The start date is contained within the input_ytd data. + start_doy_ytd = as.integer(temperature_data_frame$DOY[start_date_ytd_row]); + } else { + # The start date is contained within the input_norm data. + start_date_norm_row = which(norm_data_frame$DATE==start_date); + } + end_date_ytd_row = which(temperature_data_frame$DATE==end_date); + if (end_date_ytd_row > 0) { + # The end date is contained within the input_ytd data. + end_doy_ytd = as.integer(temperature_data_frame$DOY[end_date_ytd_row]); + } + date_str = start_date; + } else { + # We're plotting an entire year. + # Get the number of days contained in temperature_data_frame. + num_rows = dim(temperature_data_frame)[1]; + # Get the start date and end date from temperature_data_frame. + start_date_ytd_row = 1; + start_date = temperature_data_frame$DATE[1]; + end_date_ytd_row = num_rows; + end_date = temperature_data_frame$DATE[num_rows]; + date_str = format(start_date); + # Save the first DOY to later check if start_date is Jan 1. + start_doy_ytd = as.integer(temperature_data_frame$DOY[1]); + end_doy_ytd = as.integer(temperature_data_frame$DOY[num_rows]); + } + # Extract the year from the start date. + date_str_items = strsplit(date_str, "-")[[1]]; + year = date_str_items[1]; + } else { + # We're processing only the 30 year normals data, so create an empty # data frame for containing temperature data after it is converted # from the 30 year normals format to the year-to-date format. temperature_data_frame = data.frame(matrix(ncol=6, nrow=0)); colnames(temperature_data_frame) = c("LATITUDE", "LONGITUDE", "DATE", "DOY", "TMIN", "TMAX"); - # Base all dates on the current date since 30 year - # normals data does not include any dates. - year = format(Sys.Date(), "%Y"); - if (is.null(start_date) && is.null(end_date)) { - start_date = paste(year, "01", "01", sep="-"); - end_date = paste(year, "12", "31", sep="-"); - } else { - # Extract the month and day from the start date. + if (restricted_date_interval) { + # We're plotting a date interval. + # Extract the year, month and day from the start date. start_date_str = format(start_date); start_date_str_items = strsplit(start_date_str, "-")[[1]]; + year = start_date_str_items[1]; start_date_month = start_date_str_items[2]; start_date_day = start_date_str_items[3]; start_date = paste(year, start_date_month, start_date_day, sep="-"); @@ -386,87 +486,146 @@ end_date_month = end_date_str_items[2]; end_date_day = end_date_str_items[3]; end_date = paste(year, start_date_month, start_date_day, sep="-"); + } else { + # We're plotting an entire year. + # Base all dates on the current date since 30 year + # normals data does not include any dates. + year = format(Sys.Date(), "%Y"); + start_date = paste(year, "01", "01", sep="-"); + end_date = paste(year, "12", "31", sep="-"); } - # Set invalid start and end DOY. - start_doy_ytd = 0; - end_doy_ytd = 0; - } else { - # Read the input_ytd temperature data file into a data frame. - # The input_ytd data has the following 6 columns: - # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX - temperature_data_frame = read.csv(file=input_ytd, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=","); - # Set the temperature_data_frame column names for access. - colnames(temperature_data_frame) = c("LATITUDE", "LONGITUDE", "DATE", "DOY", "TMIN", "TMAX"); - if (is.null(start_date) && is.null(end_date)) { - # Get the start date. - start_date = temperature_data_frame$DATE[1]; - end_date = temperature_data_frame$DATE[num_days]; - } else { - # Extract the custom date interval from temperature_data_frame. - temperature_data_frame = extract_date_interval_rows(temperature_data_frame, start_date, end_date); - } - # Extract the year from the start date. - date_str = format(start_date); - date_str_items = strsplit(date_str, "-")[[1]]; - year = date_str_items[1]; - # Save the first DOY to later check if start_date is Jan 1. - start_doy_ytd = as.integer(temperature_data_frame$DOY[1]); - end_doy_ytd = as.integer(temperature_data_frame$DOY[num_days]); } # See if we're in a leap year. is_leap_year = is_leap_year(start_date); - # Read the input_norm temperature datafile into a data frame. - # The input_norm data has the following 10 columns: - # STATIONID, LATITUDE, LONGITUDE, ELEV_M, NAME, ST, MMDD, DOY, TMIN, TMAX - norm_data_frame = read.csv(file=input_norm, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=","); - # Set the norm_data_frame column names for access. - colnames(norm_data_frame) = c("STATIONID", "LATITUDE","LONGITUDE", "ELEV_M", "NAME", "ST", "MMDD", "DOY", "TMIN", "TMAX"); # All normals data includes Feb 29 which is row 60 in # the data, so delete that row if we're not in a leap year. if (!is_leap_year) { norm_data_frame = norm_data_frame[-c(60),]; } - if (is.null(start_date) && is.null(end_date)) { - # Get the number of days in the year. - total_days = get_total_days(is_leap_year); - } else { - # Extract the custom date interval from norm_data_frame. - norm_data_frame = extract_date_interval_rows(norm_data_frame, start_date, end_date); - # Use the pre-determined num_days for total_days. - total_days = num_days - } - # Set the location to be the station name if the user elected no to enter it. - if (is.null(location) | length(location)==0) { + # Set the location to be the station name if the user elected not to enter it. + if (is.null(location) | length(location) == 0) { location = norm_data_frame$NAME[1]; } - if (is.null(input_ytd)) { - # Convert the 30 year normals data to the year-to-date format. - for (i in 1:total_days) { - temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); + if (processing_year_to_date_data) { + # Merge the year-to-date data with the 30 year normals data. + if (restricted_date_interval) { + # The values of start_date_ytd_row and end_date_ytd_row were set above. + if (start_date_ytd_row > 0 & end_date_ytd_row > 0) { + # The date interval is contained within the input_ytd + # data, so we don't need to merge the 30 year normals data. + temperature_data_frame = temperature_data_frame[start_date_ytd_row:end_date_ytd_row,]; + } else if (start_date_ytd_row == 0 & end_date_ytd_row > 0) { + # The date interval starts in input_norm and ends in + # input_ytd, so prepend appropriate rows from input_norm + # to appropriate rows from input_ytd. + first_norm_row = which(norm_data_frame$DOY==start_date_doy); + # Get the first DOY from temperature_data_frame. + first_ytd_doy = temperature_data_frame$DOY[1]; + # End DOY of input_norm data prepended to input_ytd. + prepend_end_doy_norm = first_ytd_doy - 1; + # Get the number of rows for the restricted date interval + # that are contained in temperature_data_frame. + temperature_data_frame_rows = end_date_ytd_row; + # Get the last row needed from the 30 year normals data. + last_norm_row = which(norm_data_frame$DOY==prepend_end_doy_norm); + # Get the number of rows for the restricted date interval + # that are contained in norm_data_frame. + norm_data_frame_rows = last_norm_row - first_norm_row; + # Create a temporary data frame to contain the 30 year normals + # data from the start date to the date immediately prior to the + # first row of the input_ytd data. + tmp_norm_data_frame = data.frame(matrix(ncol=6, nrow=temperature_data_frame_rows+norm_data_frame_rows)); + for (i in first_norm_row:last_norm_row) { + # Populate the temp_data_frame row with + # values from norm_data_frame. + tmp_norm_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); + } + # Create a second temporary data frame containing the + # appropriate rows from temperature_data_frame. + tmp_temperature_data_frame = temperature_data_frame[1:first_norm_row-1,]; + # Merge the 2 temporary data frames. + temperature_data_frame = rbind(tmp_norm_data_frame, tmp_temperature_data_frame); + } else if (start_date_ytd_row > 0 & end_date_ytd_row == 0) { + # The date interval starts in input_ytd and ends in input_norm, + # so append appropriate rows from input_norm to appropriate rows + # from input_ytd. + num_rows = dim(temperature_data_frame)[1]; + # Get the number of rows for the restricted date interval + # that are contained in temperature_data_frame. + temperature_data_frame_rows = num_rows - start_date_ytd_row + # Get the DOY of the last row in the input_ytd data. + last_ytd_doy = temperature_data_frame$DOY[num_rows]; + # Get the DOYs for the first and last rows from norm_data_frame + # that will be appended to temperature_data_frame. + append_start_doy_norm = last_ytd_doy + 1; + # Get the row from norm_data_frame containing first_norm_doy. + first_norm_row = which(norm_data_frame$DOY == append_start_doy_norm); + # Get the row from norm_data_frame containing end_date_doy. + last_norm_row = which(norm_data_frame$DOY == end_date_doy); + # Get the number of rows for the restricted date interval + # that are contained in norm_data_frame. + norm_data_frame_rows = last_norm_row - first_norm_row; + # Create a temporary data frame to contain the data + # taken from both temperateu_data_frame and norm_data_frame + # for the date interval. + tmp_data_frame = data.frame(matrix(ncol=6, nrow=temperature_data_frame_rows+norm_data_frame_rows)); + # Populate tmp_data_frame with the appropriate rows from temperature_data_frame. + tmp_data_frame[temperature_data_frame_rows,] = temperature_data_frame[start_date_ytd_row:temperature_data_frame_rows,]; + # Apppend the appropriate rows from norm_data_frame to tmp_data_frame. + for (i in first_norm_row:last_norm_row) { + tmp_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); + } + temperature_data_frame = tmp_data_frame[,]; + } else if (start_date_ytd_row == 0 & end_date_ytd_row == 0) { + # The date interval is contained witin input_norm. + temperature_data_frame = from_30_year_normals(temperature_data_frame, norm_data_frame, start_date_doy, end_date_doy); + } + } else { + # We're plotting an entire year. + if (start_doy_ytd > 1) { + # The input_ytd data starts after Jan 1, so prepend + # appropriate rows from input_norm to temperature_data_frame. + prepend_end_doy_norm = start_doy_ytd - 1; + first_norm_row = 1; + last_norm_row = which(norm_data_frame$DOY == prepend_end_doy_norm); + # Create a temporary data frame to contain the input_norm data + # from Jan 1 to the date immediately prior to start_date. + tmp_data_frame = temperature_data_frame[FALSE,]; + # Populate tmp_data_frame with appropriate rows from norm_data_frame. + for (i in first_norm_row:last_norm_row) { + tmp_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); + } + # Merge the temporary data frame with temperature_data_frame. + temperature_data_frame = rbind(tmp_data_frame, temperature_data_frame); + } + # Set the value of total_days. + total_days = get_total_days(is_leap_year); + if (end_doy_ytd < total_days) { + # Define the next row for the year-to-date data from the 30 year normals data. + append_start_doy_norm = end_doy_ytd + 1; + first_norm_row = which(norm_data_frame$DOY == append_start_doy_norm); + last_norm_row = which(norm_data_frame$DOY == total_days); + # Append the 30 year normals data to the year-to-date data. + for (i in first_norm_row:last_norm_row) { + temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); + } + } } } else { - # Merge the year-to-date data with the 30 year normals data. - if (start_doy_ytd > 1) { - # The year-to-date data starts after Jan 1, so create a - # temporary data frame to contain the 30 year normals data - # from Jan 1 to the date immediately prior to start_date. - tmp_data_frame = temperature_data_frame[FALSE,]; - for (i in 1:start_doy_ytd-1) { - tmp_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); + # We're processing only the 30 year normals data. + if (restricted_date_interval) { + # Populate temperature_data_frame from norm_data_frame. + temperature_data_frame = from_30_year_normals(temperature_data_frame, norm_data_frame, start_date_doy, end_date_doy); + } else { + total_days = get_total_days(is_leap_year); + for (i in 1:total_days) { + temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); } - # Next merge the temporary data frame with the year-to-date data frame. - temperature_data_frame = rbind(tmp_data_frame, temperature_data_frame); - } - # Define the next row for the year-to-date data from the 30 year normals data. - first_normals_append_row = end_doy_ytd + 1; - # Append the 30 year normals data to the year-to-date data. - for (i in first_normals_append_row:total_days) { - temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); } } # Add a column containing the daylight length for each day. - temperature_data_frame = add_daylight_length(temperature_data_frame, total_days); - return(list(temperature_data_frame, start_date, end_date, start_doy_ytd, end_doy_ytd, is_leap_year, total_days, location)); + temperature_data_frame = add_daylight_length(temperature_data_frame); + return(list(temperature_data_frame, start_date, end_date, prepend_end_doy_norm, append_start_doy_norm, is_leap_year, location)); } render_chart = function(ticks, date_labels, chart_type, plot_std_error, insect, location, latitude, start_date, end_date, days, maxval, @@ -567,56 +726,67 @@ return(valid_date); } +# Parse the inputs. +data_list = parse_input_data(opt$input_ytd, opt$input_norm, opt$location, opt$start_date, opt$end_date); +temperature_data_frame = data_list[[1]]; +# Information needed for plots, some of these values are +# being reset here since in some case they were set above. +start_date = data_list[[2]]; +end_date = data_list[[3]]; +prepend_end_doy_norm = data_list[[4]]; +append_start_doy_norm = data_list[[5]]; +is_leap_year = data_list[[6]]; +location = data_list[[7]]; + +if (is.null(input_ytd)) { + processing_year_to_date_data = FALSE; +} else { + processing_year_to_date_data = TRUE; +} # Determine if we're plotting generations separately. if (opt$plot_generations_separately=="yes") { plot_generations_separately = TRUE; } else { plot_generations_separately = FALSE; } -# If opt$start_date and opt$end_date have values, then the -# user chose to plot a custom date interval rather than the -# entire contents of the input temperature data, so we'll -# calaculate the number of days in the custom date interval -# rather than using the number of rows in the input temperature -# data. if (is.null(opt$start_date) && is.null(opt$end_date)) { - # Use the default number of rows in the input temperature - # data as the number of days. - num_days = opt$num_days_ytd; + # We're plotting an entire year. + restricted_date_interval = FALSE; + # Display the total number of days in the Galaxy history item blurb. + if (processing_year_to_date_data) { + cat("Number of days year-to-date: ", opt$num_days_ytd, "\n"); + } else { + if (is_leap_year) { + num_days = 366; + } else { + num_days = 365; + } + cat("Number of days in year: ", num_days, "\n"); + } } else { # FIXME: currently custom date fields are free text, but # Galaxy should soon include support for a date selector # at which point this tool should be enhanced to use it. # Validate start_date. - start_date = validate_date(opt$start_date); + restricted_date_interval = TRUE; + # Calaculate the number of days in the date interval rather + # than using the number of rows in the input temperature data. + start_date = validate_date(opt$start_date); # Validate end_date. end_date = validate_date(opt$end_date); if (start_date >= end_date) { - stop_err("The start date must be before the end date for custom date intervals."); + stop_err("The start date must be between 1 and 50 days before the end date when setting date intervals for plots."); } - # Calculate the number of days in the custom date interval. + # Calculate the number of days in the date interval. num_days = difftime(start_date, end_date, units=c("days")); if (num_days > 50) { - # We need to restrict custom date intervals since + # We need to restrict date intervals since # plots render tick marks for each day. - stop_err("Custom date intervals cannot exceed 50 days."); + stop_err("Date intervals for plotting cannot exceed 50 days."); } + # Display the total number of days in the Galaxy history item blurb. + cat("Number of days in date interval: ", num_days, "\n"); } -# Display the total number of days in the Galaxy history item blurb. -cat("Year-to-date number of days: ", num_days, "\n"); -# Parse the inputs. -data_list = parse_input_data(opt$input_ytd, opt$input_norm, num_days, opt$location, opt$start_date, opt$end_date); -temperature_data_frame = data_list[[1]]; -# Information needed for plots, some of these values are -# being reset here since in some case they were set above. -start_date = data_list[[2]]; -end_date = data_list[[3]]; -start_doy_ytd = data_list[[4]]; -end_doy_ytd = data_list[[5]]; -is_leap_year = data_list[[6]]; -total_days = data_list[[7]]; -total_days_vector = c(1:total_days); -location = data_list[[8]]; # Create copies of the temperature data for generations P, F1 and F2 if we're plotting generations separately. if (plot_generations_separately) { @@ -626,7 +796,7 @@ } # Get the ticks date labels for plots. -ticks_and_labels = get_x_axis_ticks_and_labels(temperature_data_frame, total_days, start_doy_ytd, end_doy_ytd); +ticks_and_labels = get_x_axis_ticks_and_labels(temperature_data_frame, prepend_end_doy_norm, append_start_doy_norm, restricted_date_interval); ticks = c(unlist(ticks_and_labels[1])); date_labels = c(unlist(ticks_and_labels[2])); # All latitude values are the same, so get the value for plots from the first row. @@ -692,6 +862,7 @@ } } # Initialize matrices. +total_days = dim(temperature_data_frame)[1]; if (process_eggs) { Eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } @@ -1536,6 +1707,7 @@ write.csv(temperature_data_frame_F2, file=file_path, row.names=F); } +total_days_vector = c(1:dim(temperature_data_frame)[1]); if (plot_generations_separately) { for (life_stage in life_stages) { if (life_stage == "Egg") {