Mercurial > repos > greg > insect_phenology_model
view insect_phenology_model.R @ 98:d33a401c0153 draft
Uploaded
author | greg |
---|---|
date | Mon, 04 Dec 2017 11:54:10 -0500 |
parents | 58bc1a2ca936 |
children | 51045fde125e |
line wrap: on
line source
#!/usr/bin/env Rscript suppressPackageStartupMessages(library("optparse")) option_list <- list( make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"), make_option(c("-b", "--adult_accum"), action="store", dest="adult_accum", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"), make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"), make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"), make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), make_option(c("-i", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"), make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of degree-days accumulation (young nymph->old nymph)"), make_option(c("-n", "--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"), make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"), make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"), make_option(c("-t", "--std_error_plot"), action="store", dest="std_error_plot", help="Plot Standard error"), make_option(c("-v", "--input"), action="store", dest="input", help="Temperature data for selected location"), make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)"), make_option(c("-x", "--insect"), action="store", dest="insect", help="Insect name") ) parser <- OptionParser(usage="%prog [options] file", option_list=option_list) args <- parse_args(parser, positional_arguments=TRUE) opt <- args$options parse_input_data = function(input_file, num_rows) { # Read in the input temperature datafile into a data frame. temperature_data_frame <- read.csv(file=input_file, header=T, strip.white=TRUE, sep=",") num_columns <- dim(temperature_data_frame)[2] if (num_columns == 6) { # The input data has the following 6 columns: # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX # Set the column names for access when adding daylight length.. colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX") # Add a column containing the daylight length for each day. temperature_data_frame <- add_daylight_length(temperature_data_frame, num_columns, num_rows) # Reset the column names with the additional column for later access. colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN") } return(temperature_data_frame) } add_daylight_length = function(temperature_data_frame, num_columns, num_rows) { # Return a vector of daylight length (photoperido profile) for # the number of days specified in the input temperature data # (from Forsythe 1995). p = 0.8333 latitude <- temperature_data_frame$LATITUDE[1] daylight_length_vector <- NULL for (i in 1:num_rows) { # Get the day of the year from the current row # of the temperature data for computation. doy <- temperature_data_frame$DOY[i] theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186))) phi <- asin(0.39795 * cos(theta)) # Compute the length of daylight for the day of the year. daylight_length_vector[i] <- 24 - (24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi)))) } # Append daylight_length_vector as a new column to temperature_data_frame. temperature_data_frame[, num_columns+1] <- daylight_length_vector return(temperature_data_frame) } get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) { # Base development threshold for Brown Marmolated Stink Bug # insect phenology model. # TODO: Pass insect on the command line to accomodate more # the just the Brown Marmolated Stink Bub. threshold <- 14.17 # Minimum temperature for current row. dnp <- temperature_data_frame$TMIN[row] # Maximum temperature for current row. dxp <- temperature_data_frame$TMAX[row] # Mean temperature for current row. dmean <- 0.5 * (dnp + dxp) # Initialize degree day accumulation degree_days <- 0 if (dxp < threshold) { degree_days <- 0 } else { # Initialize hourly temperature. T <- NULL # Initialize degree hour vector. dh <- NULL # Daylight length for current row. y <- temperature_data_frame$DAYLEN[row] # Darkness length. z <- 24 - y # Lag coefficient. a <- 1.86 # Darkness coefficient. b <- 2.20 # Sunrise time. risetime <- 12 - y / 2 # Sunset time. settime <- 12 + y / 2 ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp for (i in 1:24) { if (i > risetime && i < settime) { # Number of hours after Tmin until sunset. m <- i - 5 T[i] = (dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp if (T[i] < 8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } else if (i > settime) { n <- i - settime T[i] = dnp + (ts - dnp) * exp( - b * n / z) if (T[i] < 8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } else { n <- i + 24 - settime T[i]=dnp + (ts - dnp) * exp( - b * n / z) if (T[i] < 8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } } degree_days <- sum(dh) / 24 } return(c(dmean, degree_days)) } dev.egg = function(temperature) { dev.rate= -0.9843 * temperature + 33.438 return(dev.rate) } dev.young = function(temperature) { n12 <- -0.3728 * temperature + 14.68 n23 <- -0.6119 * temperature + 25.249 dev.rate = mean(n12 + n23) return(dev.rate) } dev.old = function(temperature) { n34 <- -0.6119 * temperature + 17.602 n45 <- -0.4408 * temperature + 19.036 dev.rate = mean(n34 + n45) return(dev.rate) } dev.emerg = function(temperature) { emerg.rate <- -0.5332 * temperature + 24.147 return(emerg.rate) } mortality.egg = function(temperature) { if (temperature < 12.7) { mort.prob = 0.8 } else { mort.prob = 0.8 - temperature / 40.0 if (mort.prob < 0) { mort.prob = 0.01 } } return(mort.prob) } mortality.nymph = function(temperature) { if (temperature < 12.7) { mort.prob = 0.03 } else { mort.prob = temperature * 0.0008 + 0.03 } return(mort.prob) } mortality.adult = function(temperature) { if (temperature < 12.7) { mort.prob = 0.002 } else { mort.prob = temperature * 0.0005 + 0.02 } return(mort.prob) } temperature_data_frame <- parse_input_data(opt$input, opt$num_days) # All latitude values are the same, # so get the value from the first row. latitude <- temperature_data_frame$LATITUDE[1] cat("Number of days: ", opt$num_days, "\n") # Initialize matrices. S0.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) S1.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) S2.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) S3.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) S4.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) S5.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) newborn.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) death.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) adult.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) pop.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) g0.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) g1.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) g2.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) g0a.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) g1a.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) g2a.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) # Loop through replications. for (N.replications in 1:opt$replications) { # During each replication start with 1000 individuals. # TODO: user definable as well? num_insects <- 1000 # Generation, Stage, degree-days, T, Diapause. vector.ini <- c(0, 3, 0, 0, 0) # Overwintering, previttelogenic, degree-days=0, T=0, no-diapause. vector.matrix <- rep(vector.ini, num_insects) # Complete matrix for the population. vector.matrix <- base::t(matrix(vector.matrix, nrow=5)) # Time series of population size. tot.pop <- NULL gen0.pop <- rep(0, opt$num_days) gen1.pop <- rep(0, opt$num_days) gen2.pop <- rep(0, opt$num_days) S0 <- rep(0, opt$num_days) S1 <- rep(0, opt$num_days) S2 <- rep(0, opt$num_days) S3 <- rep(0, opt$num_days) S4 <- rep(0, opt$num_days) S5 <- rep(0, opt$num_days) g0.adult <- rep(0, opt$num_days) g1.adult <- rep(0, opt$num_days) g2.adult <- rep(0, opt$num_days) N.newborn <- rep(0, opt$num_days) N.death <- rep(0, opt$num_days) N.adult <- rep(0, opt$num_days) degree_days.day <- rep(0, opt$num_days) # All the days included in the input temperature dataset. for (row in 1:opt$num_days) { # Get the integer day of the year for the current row. doy <- temperature_data_frame$DOY[row] # Photoperiod in the day. photoperiod <- temperature_data_frame$DAYLEN[row] temp.profile <- get_temperature_at_hour(latitude, temperature_data_frame, row, opt$num_days) mean.temp <- temp.profile[1] degree_days.temp <- temp.profile[2] degree_days.day[row] <- degree_days.temp # Trash bin for death. death.vector <- NULL # Newborn. birth.vector <- NULL # All individuals. for (i in 1:num_insects) { # Find individual record. vector.ind <- vector.matrix[i,] # First of all, still alive? # Adjustment for late season mortality rate. if (latitude < 40.0) { post.mort <- 1 day.kill <- 300 } else { post.mort <- 2 day.kill <- 250 } if (vector.ind[2] == 0) { # Egg. death.prob = opt$egg_mort * mortality.egg(mean.temp) } else if (vector.ind[2] == 1 | vector.ind[2] == 2) { death.prob = opt$nymph_mort * mortality.nymph(mean.temp) } else if (vector.ind[2] == 3 | vector.ind[2] == 4 | vector.ind[2] == 5) { # For adult. if (doy < day.kill) { death.prob = opt$adult_mort * mortality.adult(mean.temp) } else { # Increase adult mortality after fall equinox. death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp) } } # (or dependent on temperature and life stage?) u.d <- runif(1) if (u.d < death.prob) { death.vector <- c(death.vector, i) } else { # Aggregrate index of dead bug. # Event 1 end of diapause. if (vector.ind[1] == 0 && vector.ind[2] == 3) { # Overwintering adult (previttelogenic). if (photoperiod > opt$photoperiod && vector.ind[3] > 68 && doy < 180) { # Add 68C to become fully reproductively matured. # Transfer to vittelogenic. vector.ind <- c(0, 4, 0, 0, 0) vector.matrix[i,] <- vector.ind } else { # Add to degree_days. vector.ind[3] <- vector.ind[3] + degree_days.temp # Add 1 day in current stage. vector.ind[4] <- vector.ind[4] + 1 vector.matrix[i,] <- vector.ind } } if (vector.ind[1] != 0 && vector.ind[2] == 3) { # Not overwintering adult (previttelogenic). current.gen <- vector.ind[1] if (vector.ind[3] > 68) { # Add 68C to become fully reproductively matured. # Transfer to vittelogenic. vector.ind <- c(current.gen, 4, 0, 0, 0) vector.matrix[i,] <- vector.ind } else { # Add to degree_days. vector.ind[3] <- vector.ind[3] + degree_days.temp # Add 1 day in current stage. vector.ind[4] <- vector.ind[4] + 1 vector.matrix[i,] <- vector.ind } } # Event 2 oviposition -- where population dynamics comes from. if (vector.ind[2] == 4 && vector.ind[1] == 0 && mean.temp > 10) { # Vittelogenic stage, overwintering generation. if (vector.ind[4] == 0) { # Just turned in vittelogenic stage. num_insects.birth = round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) } else { # Daily probability of birth. p.birth = opt$oviposition * 0.01 u1 <- runif(1) if (u1 < p.birth) { num_insects.birth = round(runif(1, 2, 8)) } } # Add to degree_days. vector.ind[3] <- vector.ind[3] + degree_days.temp # Add 1 day in current stage. vector.ind[4] <- vector.ind[4] + 1 vector.matrix[i,] <- vector.ind if (num_insects.birth > 0) { # Add new birth -- might be in different generations. new.gen <- vector.ind[1] + 1 # Egg profile. new.ind <- c(new.gen, 0, 0, 0, 0) new.vector <- rep(new.ind, num_insects.birth) # Update batch of egg profile. new.vector <- t(matrix(new.vector, nrow=5)) # Group with total eggs laid in that day. birth.vector <- rbind(birth.vector, new.vector) } } # Event 2 oviposition -- for generation 1. if (vector.ind[2] == 4 && vector.ind[1] == 1 && mean.temp > 12.5 && doy < 222) { # Vittelogenic stage, 1st generation if (vector.ind[4] == 0) { # Just turned in vittelogenic stage. num_insects.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) } else { # Daily probability of birth. p.birth = opt$oviposition * 0.01 u1 <- runif(1) if (u1 < p.birth) { num_insects.birth = round(runif(1, 2, 8)) } } # Add to degree_days. vector.ind[3] <- vector.ind[3] + degree_days.temp # Add 1 day in current stage. vector.ind[4] <- vector.ind[4] + 1 vector.matrix[i,] <- vector.ind if (num_insects.birth > 0) { # Add new birth -- might be in different generations. new.gen <- vector.ind[1] + 1 # Egg profile. new.ind <- c(new.gen, 0, 0, 0, 0) new.vector <- rep(new.ind, num_insects.birth) # Update batch of egg profile. new.vector <- t(matrix(new.vector, nrow=5)) # Group with total eggs laid in that day. birth.vector <- rbind(birth.vector, new.vector) } } # Event 3 development (with diapause determination). # Event 3.1 egg development to young nymph (vector.ind[2]=0 -> egg). if (vector.ind[2] == 0) { # Egg stage. # Add to degree_days. vector.ind[3] <- vector.ind[3] + degree_days.temp if (vector.ind[3] >= (68 + opt$young_nymph_accum)) { # From egg to young nymph, degree-days requirement met. current.gen <- vector.ind[1] # Transfer to young nymph stage. vector.ind <- c(current.gen, 1, 0, 0, 0) } else { # Add 1 day in current stage. vector.ind[4] <- vector.ind[4] + 1 } vector.matrix[i,] <- vector.ind } # Event 3.2 young nymph to old nymph (vector.ind[2]=1 -> young nymph: determines diapause). if (vector.ind[2] == 1) { # Young nymph stage. # Add to degree_days. vector.ind[3] <- vector.ind[3] + degree_days.temp if (vector.ind[3] >= (250 + opt$old_nymph_accum)) { # From young to old nymph, degree_days requirement met. current.gen <- vector.ind[1] # Transfer to old nym stage. vector.ind <- c(current.gen, 2, 0, 0, 0) if (photoperiod < opt$photoperiod && doy > 180) { vector.ind[5] <- 1 } # Prepare for diapausing. } else { # Add 1 day in current stage. vector.ind[4] <- vector.ind[4] + 1 } vector.matrix[i,] <- vector.ind } # Event 3.3 old nymph to adult: previttelogenic or diapausing? if (vector.ind[2] == 2) { # Old nymph stage. # Add to degree_days. vector.ind[3] <- vector.ind[3] + degree_days.temp if (vector.ind[3] >= (200 + opt$adult_accum)) { # From old to adult, degree_days requirement met. current.gen <- vector.ind[1] if (vector.ind[5] == 0) { # Non-diapausing adult -- previttelogenic. vector.ind <- c(current.gen, 3, 0, 0, 0) } else { # Diapausing. vector.ind <- c(current.gen, 5, 0, 0, 1) } } else { # Add 1 day in current stage. vector.ind[4] <- vector.ind[4] + 1 } vector.matrix[i,] <- vector.ind } # Event 4 growing of diapausing adult (unimportant, but still necessary). if (vector.ind[2] == 5) { vector.ind[3] <- vector.ind[3] + degree_days.temp vector.ind[4] <- vector.ind[4] + 1 vector.matrix[i,] <- vector.ind } } # Else if it is still alive. } # End of the individual bug loop. # Find how many died. num_insects.death <- length(death.vector) if (num_insects.death > 0) { vector.matrix <- vector.matrix[-death.vector, ] } # Remove record of dead. # Find how many new born. num_insects.newborn <- length(birth.vector[,1]) vector.matrix <- rbind(vector.matrix, birth.vector) # Update population size for the next day. num_insects <- num_insects - num_insects.death + num_insects.newborn # Aggregate results by day. tot.pop <- c(tot.pop, num_insects) # Egg. sum_eggs <- sum(vector.matrix[,2] == 0) # Young nymph. sum_young_nymphs <- sum(vector.matrix[,2] == 1) # Old nymph. sum_old_nymphs <- sum(vector.matrix[,2] == 2) # Previtellogenic. sum_previtellogenic <- sum(vector.matrix[,2] == 3) # Vitellogenic. sum_vitellogenic <- sum(vector.matrix[,2] == 4) # Diapausing. sum_diapausing <- sum(vector.matrix[,2] == 5) # Overwintering adult. sum_overwintering_adults <- sum(vector.matrix[,1] == 0) # First generation. sum_first_generation <- sum(vector.matrix[,1] == 1) # Second generation. sum_second_generation <- sum(vector.matrix[,1] == 2) # Sum of all adults. num_insects.adult <- sum(vector.matrix[,2] == 3) + sum(vector.matrix[,2] == 4) + sum(vector.matrix[,2] == 5) # Population sizes. gen0.pop[row] <- sum_overwintering_adults gen1.pop[row] <- sum_first_generation gen2.pop[row] <- sum_second_generation S0[row] <- sum_eggs S1[row] <- sum_young_nymphs S2[row] <- sum_old_nymphs S3[row] <- sum_previtellogenic S4[row] <- sum_vitellogenic S5[row] <- sum_diapausing g0.adult[row] <- sum(vector.matrix[,1] == 0) g1.adult[row] <- sum((vector.matrix[,1] == 1 & vector.matrix[,2] == 3) | (vector.matrix[,1] == 1 & vector.matrix[,2] == 4) | (vector.matrix[,1] == 1 & vector.matrix[,2] == 5)) g2.adult[row] <- sum((vector.matrix[,1]== 2 & vector.matrix[,2] == 3) | (vector.matrix[,1] == 2 & vector.matrix[,2] == 4) | (vector.matrix[,1] == 2 & vector.matrix[,2] == 5)) N.newborn[row] <- num_insects.newborn N.death[row] <- num_insects.death N.adult[row] <- num_insects.adult } # end of days specified in the input temperature data degree_days.cum <- cumsum(degree_days.day) # Collect all the outputs. S0.replications[,N.replications] <- S0 S1.replications[,N.replications] <- S1 S2.replications[,N.replications] <- S2 S3.replications[,N.replications] <- S3 S4.replications[,N.replications] <- S4 S5.replications[,N.replications] <- S5 newborn.replications[,N.replications] <- N.newborn death.replications[,N.replications] <- N.death adult.replications[,N.replications] <- N.adult pop.replications[,N.replications] <- tot.pop g0.replications[,N.replications] <- gen0.pop g1.replications[,N.replications] <- gen1.pop g2.replications[,N.replications] <- gen2.pop g0a.replications[,N.replications] <- g0.adult g1a.replications[,N.replications] <- g1.adult g2a.replications[,N.replications] <- g2.adult } # Mean value for adults. adult_mean <- apply((S3.replications + S4.replications + S5.replications), 1, mean) # Mean value for nymphs. nymph_mean <- apply((S1.replications + S2.replications), 1, mean) # Mean value for eggs. egg_mean <- apply(S0.replications, 1, mean) # Mean value for P. g0 <- apply(g0.replications, 1, mean) # Mean value for F1. g1 <- apply(g1.replications, 1, mean) # Mean value for F2. g2 <- apply(g2.replications, 1, mean) # Mean value for P adult. g0a <- apply(g0a.replications, 1, mean) # Mean value for F1 adult. g1a <- apply(g1a.replications, 1, mean) # Mean value for F2 adult. F2_adult_mean <- apply(g2a.replications, 1, mean) # Standard error for adults. adult_mean.std_error <- apply((S3.replications + S4.replications + S5.replications), 1, sd) / sqrt(opt$replications) # Standard error for nymphs. nymph_mean.std_error <- apply((S1.replications + S2.replications) / sqrt(opt$replications), 1, sd) # Standard error for eggs. egg_mean.std_error <- apply(S0.replications, 1, sd) / sqrt(opt$replications) # Standard error value for P. g0.std_error <- apply(g0.replications, 1, sd) / sqrt(opt$replications) # Standard error for F1. g1.std_error <- apply(g1.replications, 1, sd) / sqrt(opt$replications) # Standard error for F2. g2.std_error <- apply(g2.replications, 1, sd) / sqrt(opt$replications) # Standard error for P adult. g0a.std_error <- apply(g0a.replications, 1, sd) / sqrt(opt$replications) # Standard error for F1 adult. g1a.std_error <- apply(g1a.replications, 1, sd) / sqrt(opt$replications) # Standard error for F2 adult. g2a.std_error <- apply(g2a.replications, 1, sd) / sqrt(opt$replications) dev.new(width=20, height=30) # Start PDF device driver to save charts to output. pdf(file=opt$output, width=20, height=30, bg="white") par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)) # Data analysis and visualization plots # only within a single calendar year. day.all <- c(1:opt$num_days) start_date <- temperature_data_frame$DATE[1] end_date <- temperature_data_frame$DATE[opt$num_days] # Subfigure 1: population size by life stage title <- paste(opt$insect, ": Total pop. by life stage :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") plot(day.all, adult_mean, main=title, type="l", ylim=c(0, max(egg_mean + egg_mean.std_error, nymph_mean + nymph_mean.std_error, adult_mean + adult_mean.std_error)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) # Young and old nymphs. lines(day.all, nymph_mean, lwd=2, lty=1, col=2) # Eggs lines(day.all, egg_mean, lwd=2, lty=1, col=4) axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) axis(2, cex.axis=3) legend("topleft", c("Egg", "Nymph", "Adult"), lty=c(1, 1, 1), col=c(4, 2, 1), cex=3) if (opt$std_error_plot == 1) { # Add Standard error lines to plot # Standard error for adults lines (day.all, adult_mean+adult_mean.std_error, lty=2) lines (day.all, adult_mean-adult_mean.std_error, lty=2) # Standard error for nymphs lines (day.all, nymph_mean+nymph_mean.std_error, col=2, lty=2) lines (day.all, nymph_mean-nymph_mean.std_error, col=2, lty=2) # Standard error for eggs lines (day.all, egg_mean+egg_mean.std_error, col=4, lty=2) lines (day.all, egg_mean-egg_mean.std_error, col=4, lty=2) } # Subfigure 2: population size by generation title <- paste(opt$insect, ": Total pop. by generation :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") plot(day.all, g0, main=title, type="l", ylim=c(0, max(g2)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) lines(day.all, g1, lwd = 2, lty = 1, col=2) lines(day.all, g2, lwd = 2, lty = 1, col=4) axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) axis(2, cex.axis=3) legend("topleft", c("P", "F1", "F2"), lty=c(1, 1, 1), col=c(1, 2, 4), cex=3) if (opt$std_error_plot == 1) { # Add Standard error lines to plot # Standard error for adults lines (day.all, g0+g0.std_error, lty=2) lines (day.all, g0-g0.std_error, lty=2) # Standard error for nymphs lines (day.all, g1+g1.std_error, col=2, lty=2) lines (day.all, g1-g1.std_error, col=2, lty=2) # Standard error for eggs lines (day.all, g2+g2.std_error, col=4, lty=2) lines (day.all, g2-g2.std_error, col=4, lty=2) } # Subfigure 3: adult population size by generation title <- paste(opt$insect, ": Adult pop. by generation :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") plot(day.all, g0a, ylim=c(0, max(F2_adult_mean) + 100), main=title, type="l", axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) lines(day.all, g1a, lwd = 2, lty = 1, col=2) lines(day.all, F2_adult_mean, lwd = 2, lty = 1, col=4) axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) axis(2, cex.axis=3) legend("topleft", c("P", "F1", "F2"), lty=c(1, 1, 1), col=c(1, 2, 4), cex=3) if (opt$std_error_plot == 1) { # Add Standard error lines to plot # Standard error for adults lines (day.all, g0a+g0a.std_error, lty=2) lines (day.all, g0a-g0a.std_error, lty=2) # Standard error for nymphs lines (day.all, g1a+g1a.std_error, col=2, lty=2) lines (day.all, g1a-g1a.std_error, col=2, lty=2) # Standard error for eggs lines (day.all, F2_adult_mean+g2a.std_error, col=4, lty=2) lines (day.all, F2_adult_mean-g2a.std_error, col=4, lty=2) } # Turn off device driver to flush output. dev.off()