Mercurial > repos > greg > insect_phenology_model
comparison insect_phenology_model.R @ 102:ce996e90f5a7 draft
Uploaded
author | greg |
---|---|
date | Tue, 05 Dec 2017 10:32:04 -0500 |
parents | 691b677d8f83 |
children | 4d9e40d8af0f |
comparison
equal
deleted
inserted
replaced
101:691b677d8f83 | 102:ce996e90f5a7 |
---|---|
1 #!/usr/bin/env Rscript | 1 #!/usr/bin/env Rscript |
2 | 2 |
3 suppressPackageStartupMessages(library("optparse")) | 3 suppressPackageStartupMessages(library("optparse")) |
4 | 4 |
5 option_list <- list( | 5 option_list <- list( |
6 make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"), | 6 make_option(c("-a", "--adult_mortality"), action="store", dest="adult_mortality", type="integer", help="Adjustment rate for adult mortality"), |
7 make_option(c("-b", "--adult_accum"), action="store", dest="adult_accum", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"), | 7 make_option(c("-b", "--adult_accumulation"), action="store", dest="adult_accumulation", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"), |
8 make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"), | 8 make_option(c("-c", "--egg_mortality"), action="store", dest="egg_mortality", type="integer", help="Adjustment rate for egg mortality"), |
9 make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"), | 9 make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"), |
10 make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), | 10 make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), |
11 make_option(c("-i", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), | 11 make_option(c("-i", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), |
12 make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"), | 12 make_option(c("-j", "--nymph_mortality"), action="store", dest="nymph_mortality", type="integer", help="Adjustment rate for nymph mortality"), |
13 make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of degree-days accumulation (young nymph->old nymph)"), | 13 make_option(c("-k", "--old_nymph_accumulation"), action="store", dest="old_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (young nymph->old nymph)"), |
14 make_option(c("-n", "--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"), | 14 make_option(c("-n", "--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"), |
15 make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"), | 15 make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"), |
16 make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), | 16 make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), |
17 make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), | 17 make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), |
18 make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"), | 18 make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"), |
19 make_option(c("-t", "--std_error_plot"), action="store", dest="std_error_plot", help="Plot Standard error"), | 19 make_option(c("-t", "--std_error_plot"), action="store", dest="std_error_plot", help="Plot Standard error"), |
20 make_option(c("-v", "--input"), action="store", dest="input", help="Temperature data for selected location"), | 20 make_option(c("-v", "--input"), action="store", dest="input", help="Temperature data for selected location"), |
21 make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)"), | 21 make_option(c("-y", "--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)"), |
22 make_option(c("-x", "--insect"), action="store", dest="insect", help="Insect name") | 22 make_option(c("-x", "--insect"), action="store", dest="insect", help="Insect name") |
23 ) | 23 ) |
24 | 24 |
25 parser <- OptionParser(usage="%prog [options] file", option_list=option_list) | 25 parser <- OptionParser(usage="%prog [options] file", option_list=option_list) |
26 args <- parse_args(parser, positional_arguments=TRUE) | 26 args <- parse_args(parser, positional_arguments=TRUE) |
27 opt <- args$options | 27 opt <- args$options |
28 | |
29 parse_input_data = function(input_file, num_rows) { | |
30 # Read in the input temperature datafile into a data frame. | |
31 temperature_data_frame <- read.csv(file=input_file, header=T, strip.white=TRUE, sep=",") | |
32 num_columns <- dim(temperature_data_frame)[2] | |
33 if (num_columns == 6) { | |
34 # The input data has the following 6 columns: | |
35 # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX | |
36 # Set the column names for access when adding daylight length.. | |
37 colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX") | |
38 # Add a column containing the daylight length for each day. | |
39 temperature_data_frame <- add_daylight_length(temperature_data_frame, num_columns, num_rows) | |
40 # Reset the column names with the additional column for later access. | |
41 colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN") | |
42 } | |
43 return(temperature_data_frame) | |
44 } | |
45 | 28 |
46 add_daylight_length = function(temperature_data_frame, num_columns, num_rows) { | 29 add_daylight_length = function(temperature_data_frame, num_columns, num_rows) { |
47 # Return a vector of daylight length (photoperido profile) for | 30 # Return a vector of daylight length (photoperido profile) for |
48 # the number of days specified in the input temperature data | 31 # the number of days specified in the input temperature data |
49 # (from Forsythe 1995). | 32 # (from Forsythe 1995). |
55 # of the temperature data for computation. | 38 # of the temperature data for computation. |
56 doy <- temperature_data_frame$DOY[i] | 39 doy <- temperature_data_frame$DOY[i] |
57 theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186))) | 40 theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186))) |
58 phi <- asin(0.39795 * cos(theta)) | 41 phi <- asin(0.39795 * cos(theta)) |
59 # Compute the length of daylight for the day of the year. | 42 # Compute the length of daylight for the day of the year. |
60 daylight_length_vector[i] <- 24 - (24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi)))) | 43 darkness_length <- 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi))) |
44 daylight_length_vector[i] <- 24 - darkness_length | |
61 } | 45 } |
62 # Append daylight_length_vector as a new column to temperature_data_frame. | 46 # Append daylight_length_vector as a new column to temperature_data_frame. |
63 temperature_data_frame[, num_columns+1] <- daylight_length_vector | 47 temperature_data_frame[, num_columns+1] <- daylight_length_vector |
64 return(temperature_data_frame) | 48 return(temperature_data_frame) |
65 } | 49 } |
66 | 50 |
51 dev.egg = function(temperature) { | |
52 dev.rate = -0.9843 * temperature + 33.438 | |
53 return(dev.rate) | |
54 } | |
55 | |
56 dev.emerg = function(temperature) { | |
57 emerg.rate <- -0.5332 * temperature + 24.147 | |
58 return(emerg.rate) | |
59 } | |
60 | |
61 dev.old = function(temperature) { | |
62 n34 <- -0.6119 * temperature + 17.602 | |
63 n45 <- -0.4408 * temperature + 19.036 | |
64 dev.rate = mean(n34 + n45) | |
65 return(dev.rate) | |
66 } | |
67 | |
68 dev.young = function(temperature) { | |
69 n12 <- -0.3728 * temperature + 14.68 | |
70 n23 <- -0.6119 * temperature + 25.249 | |
71 dev.rate = mean(n12 + n23) | |
72 return(dev.rate) | |
73 } | |
74 | |
67 get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) { | 75 get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) { |
68 # Base development threshold for Brown Marmolated Stink Bug | 76 # Base development threshold for Brown Marmolated Stink Bug |
69 # insect phenology model. | 77 # insect phenology model. |
70 # TODO: Pass insect on the command line to accomodate more | |
71 # the just the Brown Marmolated Stink Bub. | |
72 threshold <- 14.17 | 78 threshold <- 14.17 |
73 # Minimum temperature for current row. | 79 # Minimum temperature for current row. |
74 dnp <- temperature_data_frame$TMIN[row] | 80 curr_min_temp <- temperature_data_frame$TMIN[row] |
75 # Maximum temperature for current row. | 81 # Maximum temperature for current row. |
76 dxp <- temperature_data_frame$TMAX[row] | 82 curr_max_temp <- temperature_data_frame$TMAX[row] |
77 # Mean temperature for current row. | 83 # Mean temperature for current row. |
78 dmean <- 0.5 * (dnp + dxp) | 84 curr_mean_temp <- 0.5 * (curr_min_temp + curr_max_temp) |
79 # Initialize degree day accumulation | 85 # Initialize degree day accumulation |
80 degree_days <- 0 | 86 degree_days <- 0 |
81 if (dxp < threshold) { | 87 if (curr_max_temp < threshold) { |
82 degree_days <- 0 | 88 degree_days <- 0 |
83 } | 89 } |
84 else { | 90 else { |
85 # Initialize hourly temperature. | 91 # Initialize hourly temperature. |
86 T <- NULL | 92 T <- NULL |
96 b <- 2.20 | 102 b <- 2.20 |
97 # Sunrise time. | 103 # Sunrise time. |
98 risetime <- 12 - y / 2 | 104 risetime <- 12 - y / 2 |
99 # Sunset time. | 105 # Sunset time. |
100 settime <- 12 + y / 2 | 106 settime <- 12 + y / 2 |
101 ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp | 107 ts <- (curr_max_temp - curr_min_temp) * sin(pi * (settime - 5) / (y + 2 * a)) + curr_min_temp |
102 for (i in 1:24) { | 108 for (i in 1:24) { |
103 if (i > risetime && i < settime) { | 109 if (i > risetime && i < settime) { |
104 # Number of hours after Tmin until sunset. | 110 # Number of hours after Tmin until sunset. |
105 m <- i - 5 | 111 m <- i - 5 |
106 T[i] = (dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp | 112 T[i] = (curr_max_temp - curr_min_temp) * sin(pi * m / (y + 2 * a)) + curr_min_temp |
107 if (T[i] < 8.4) { | 113 if (T[i] < 8.4) { |
108 dh[i] <- 0 | 114 dh[i] <- 0 |
109 } | 115 } |
110 else { | 116 else { |
111 dh[i] <- T[i] - 8.4 | 117 dh[i] <- T[i] - 8.4 |
112 } | 118 } |
113 } | 119 } |
114 else if (i > settime) { | 120 else if (i > settime) { |
115 n <- i - settime | 121 n <- i - settime |
116 T[i] = dnp + (ts - dnp) * exp( - b * n / z) | 122 T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z) |
117 if (T[i] < 8.4) { | 123 if (T[i] < 8.4) { |
118 dh[i] <- 0 | 124 dh[i] <- 0 |
119 } | 125 } |
120 else { | 126 else { |
121 dh[i] <- T[i] - 8.4 | 127 dh[i] <- T[i] - 8.4 |
122 } | 128 } |
123 } | 129 } |
124 else { | 130 else { |
125 n <- i + 24 - settime | 131 n <- i + 24 - settime |
126 T[i]=dnp + (ts - dnp) * exp( - b * n / z) | 132 T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z) |
127 if (T[i] < 8.4) { | 133 if (T[i] < 8.4) { |
128 dh[i] <- 0 | 134 dh[i] <- 0 |
129 } | 135 } |
130 else { | 136 else { |
131 dh[i] <- T[i] - 8.4 | 137 dh[i] <- T[i] - 8.4 |
132 } | 138 } |
133 } | 139 } |
134 } | 140 } |
135 degree_days <- sum(dh) / 24 | 141 degree_days <- sum(dh) / 24 |
136 } | 142 } |
137 return(c(dmean, degree_days)) | 143 return(c(curr_mean_temp, degree_days)) |
138 } | 144 } |
139 | 145 |
140 dev.egg = function(temperature) { | 146 mortality.adult = function(temperature) { |
141 dev.rate= -0.9843 * temperature + 33.438 | 147 if (temperature < 12.7) { |
142 return(dev.rate) | 148 mortality.probability = 0.002 |
143 } | 149 } |
144 | 150 else { |
145 dev.young = function(temperature) { | 151 mortality.probability = temperature * 0.0005 + 0.02 |
146 n12 <- -0.3728 * temperature + 14.68 | 152 } |
147 n23 <- -0.6119 * temperature + 25.249 | 153 return(mortality.probability) |
148 dev.rate = mean(n12 + n23) | |
149 return(dev.rate) | |
150 } | |
151 | |
152 dev.old = function(temperature) { | |
153 n34 <- -0.6119 * temperature + 17.602 | |
154 n45 <- -0.4408 * temperature + 19.036 | |
155 dev.rate = mean(n34 + n45) | |
156 return(dev.rate) | |
157 } | |
158 | |
159 dev.emerg = function(temperature) { | |
160 emerg.rate <- -0.5332 * temperature + 24.147 | |
161 return(emerg.rate) | |
162 } | 154 } |
163 | 155 |
164 mortality.egg = function(temperature) { | 156 mortality.egg = function(temperature) { |
165 if (temperature < 12.7) { | 157 if (temperature < 12.7) { |
166 mort.prob = 0.8 | 158 mortality.probability = 0.8 |
167 } | 159 } |
168 else { | 160 else { |
169 mort.prob = 0.8 - temperature / 40.0 | 161 mortality.probability = 0.8 - temperature / 40.0 |
170 if (mort.prob < 0) { | 162 if (mortality.probability < 0) { |
171 mort.prob = 0.01 | 163 mortality.probability = 0.01 |
172 } | 164 } |
173 } | 165 } |
174 return(mort.prob) | 166 return(mortality.probability) |
175 } | 167 } |
176 | 168 |
177 mortality.nymph = function(temperature) { | 169 mortality.nymph = function(temperature) { |
178 if (temperature < 12.7) { | 170 if (temperature < 12.7) { |
179 mort.prob = 0.03 | 171 mortality.probability = 0.03 |
180 } | 172 } |
181 else { | 173 else { |
182 mort.prob = temperature * 0.0008 + 0.03 | 174 mortality.probability = temperature * 0.0008 + 0.03 |
183 } | 175 } |
184 return(mort.prob) | 176 return(mortality.probability) |
185 } | 177 } |
186 | 178 |
187 mortality.adult = function(temperature) { | 179 parse_input_data = function(input_file, num_rows) { |
188 if (temperature < 12.7) { | 180 # Read in the input temperature datafile into a data frame. |
189 mort.prob = 0.002 | 181 temperature_data_frame <- read.csv(file=input_file, header=T, strip.white=TRUE, sep=",") |
190 } | 182 num_columns <- dim(temperature_data_frame)[2] |
191 else { | 183 if (num_columns == 6) { |
192 mort.prob = temperature * 0.0005 + 0.02 | 184 # The input data has the following 6 columns: |
193 } | 185 # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX |
194 return(mort.prob) | 186 # Set the column names for access when adding daylight length.. |
187 colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX") | |
188 # Add a column containing the daylight length for each day. | |
189 temperature_data_frame <- add_daylight_length(temperature_data_frame, num_columns, num_rows) | |
190 # Reset the column names with the additional column for later access. | |
191 colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN") | |
192 } | |
193 return(temperature_data_frame) | |
194 } | |
195 | |
196 render_chart = function(chart_type, insect, location, latitude, start_date, end_date, days, maxval, plot_std_error, | |
197 group1, group2, group3, group1_std_error, group2_std_error, group3_std_error) { | |
198 if (chart_type == "pop_size_by_life_stage") { | |
199 title <- paste(insect, ": Total pop. by life stage :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | |
200 legend("topleft", c("Egg", "Nymph", "Adult"), lty=c(1, 1, 1), col=c(4, 2, 1), cex=3) | |
201 } else if (chart_type == "pop_size_by_generation") { | |
202 title <- paste(insect, ": Total pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | |
203 legend("topleft", c("P", "F1", "F2"), lty=c(1, 1, 1), col=c(1, 2, 4), cex=3) | |
204 } else if (chart_type == "adult_pop_size_by_generation") { | |
205 title <- paste(insect, ": Adult pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | |
206 legend("topleft", c("P", "F1", "F2"), lty=c(1, 1, 1), col=c(1, 2, 4), cex=3) | |
207 } | |
208 plot(days, group1, main=title, type="l", ylim=c(0, maxval), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) | |
209 lines(days, group2, lwd=2, lty=1, col=2) | |
210 lines(days, group3, lwd=2, lty=1, col=4) | |
211 axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
212 axis(2, cex.axis=3) | |
213 if (plot_std_error==1) { | |
214 # Standard error for group1. | |
215 lines(days, group1+group1_std_error, lty=2) | |
216 lines (days, group1-group1_std_error, lty=2) | |
217 # Standard error for group2. | |
218 lines(days, group2+group2_std_error, col=2, lty=2) | |
219 lines(days, group2-group2_std_error, col=2, lty=2) | |
220 # Standard error for group3. | |
221 lines(days, group3+group3_std_error, col=4, lty=2) | |
222 lines(days, group3-group3_std_error, col=4, lty=2) | |
223 } | |
195 } | 224 } |
196 | 225 |
197 temperature_data_frame <- parse_input_data(opt$input, opt$num_days) | 226 temperature_data_frame <- parse_input_data(opt$input, opt$num_days) |
198 # All latitude values are the same, | 227 # All latitude values are the same, |
199 # so get the value from the first row. | 228 # so get the value from the first row. |
200 latitude <- temperature_data_frame$LATITUDE[1] | 229 latitude <- temperature_data_frame$LATITUDE[1] |
201 | 230 |
202 cat("Number of days: ", opt$num_days, "\n") | 231 cat("Number of days: ", opt$num_days, "\n") |
203 | 232 |
204 # Initialize matrices. | 233 # Initialize matrices. |
205 S0.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 234 Eggs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
206 S1.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 235 YoungNymphs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
207 S2.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 236 OldNymphs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
208 S3.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 237 Previtellogenic.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
209 S4.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 238 Vitellogenic.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
210 S5.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 239 Diapausing.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
211 newborn.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 240 newborn.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
212 death.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 241 death.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
213 adult.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 242 adult.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
214 pop.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 243 population.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
215 P.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 244 P.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
216 F1.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 245 F1.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
217 F2.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 246 F2.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
218 P_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 247 P_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
219 F1_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 248 F1_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
220 F2_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | 249 F2_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
221 | 250 |
222 # Loop through replications. | 251 # Process replications. |
223 for (N.replications in 1:opt$replications) { | 252 for (N.replications in 1:opt$replications) { |
224 # During each replication start with 1000 individuals. | 253 # During each replication start with 1000 individuals. |
225 # TODO: user definable as well? | 254 # TODO: user definable as well? |
226 num_insects <- 1000 | 255 num_insects <- 1000 |
227 # Generation, Stage, degree-days, T, Diapause. | 256 # Generation, Stage, degree-days, T, Diapause. |
233 # Time series of population size. | 262 # Time series of population size. |
234 total.population <- NULL | 263 total.population <- NULL |
235 overwintering_adult.population <- rep(0, opt$num_days) | 264 overwintering_adult.population <- rep(0, opt$num_days) |
236 first_generation.population <- rep(0, opt$num_days) | 265 first_generation.population <- rep(0, opt$num_days) |
237 second_generation.population <- rep(0, opt$num_days) | 266 second_generation.population <- rep(0, opt$num_days) |
238 S0 <- rep(0, opt$num_days) | 267 Eggs <- rep(0, opt$num_days) |
239 S1 <- rep(0, opt$num_days) | 268 YoungNymphs <- rep(0, opt$num_days) |
240 S2 <- rep(0, opt$num_days) | 269 OldNymphs <- rep(0, opt$num_days) |
241 S3 <- rep(0, opt$num_days) | 270 Previtellogenic <- rep(0, opt$num_days) |
242 S4 <- rep(0, opt$num_days) | 271 Vitellogenic <- rep(0, opt$num_days) |
243 S5 <- rep(0, opt$num_days) | 272 Diapausing <- rep(0, opt$num_days) |
244 P.adult <- rep(0, opt$num_days) | 273 P.adult <- rep(0, opt$num_days) |
245 F1.adult <- rep(0, opt$num_days) | 274 F1.adult <- rep(0, opt$num_days) |
246 F2.adult <- rep(0, opt$num_days) | 275 F2.adult <- rep(0, opt$num_days) |
247 N.newborn <- rep(0, opt$num_days) | 276 N.newborn <- rep(0, opt$num_days) |
248 N.death <- rep(0, opt$num_days) | 277 N.death <- rep(0, opt$num_days) |
263 # Newborn. | 292 # Newborn. |
264 birth.vector <- NULL | 293 birth.vector <- NULL |
265 # All individuals. | 294 # All individuals. |
266 for (i in 1:num_insects) { | 295 for (i in 1:num_insects) { |
267 # Find individual record. | 296 # Find individual record. |
268 vector.ind <- vector.matrix[i,] | 297 vector.individual <- vector.matrix[i,] |
269 # First of all, still alive? | 298 # First of all, still alive? |
270 # Adjustment for late season mortality rate. | 299 # Adjustment for late season mortality rate. |
271 if (latitude < 40.0) { | 300 if (latitude < 40.0) { |
272 post.mort <- 1 | 301 post.mortality <- 1 |
273 day.kill <- 300 | 302 day.kill <- 300 |
274 } | 303 } |
275 else { | 304 else { |
276 post.mort <- 2 | 305 post.mortality <- 2 |
277 day.kill <- 250 | 306 day.kill <- 250 |
278 } | 307 } |
279 if (vector.ind[2] == 0) { | 308 if (vector.individual[2] == 0) { |
280 # Egg. | 309 # Egg. |
281 death.prob = opt$egg_mort * mortality.egg(mean.temp) | 310 death.probability = opt$egg_mortality * mortality.egg(mean.temp) |
282 } | 311 } |
283 else if (vector.ind[2] == 1 | vector.ind[2] == 2) { | 312 else if (vector.individual[2] == 1 | vector.individual[2] == 2) { |
284 death.prob = opt$nymph_mort * mortality.nymph(mean.temp) | 313 death.probability = opt$nymph_mortality * mortality.nymph(mean.temp) |
285 } | 314 } |
286 else if (vector.ind[2] == 3 | vector.ind[2] == 4 | vector.ind[2] == 5) { | 315 else if (vector.individual[2] == 3 | vector.individual[2] == 4 | vector.individual[2] == 5) { |
287 # For adult. | 316 # For adult. |
288 if (doy < day.kill) { | 317 if (doy < day.kill) { |
289 death.prob = opt$adult_mort * mortality.adult(mean.temp) | 318 death.probability = opt$adult_mortality * mortality.adult(mean.temp) |
290 } | 319 } |
291 else { | 320 else { |
292 # Increase adult mortality after fall equinox. | 321 # Increase adult mortality after fall equinox. |
293 death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp) | 322 death.probability = opt$adult_mortality * post.mortality * mortality.adult(mean.temp) |
294 } | 323 } |
295 } | 324 } |
296 # (or dependent on temperature and life stage?) | 325 # (or dependent on temperature and life stage?) |
297 u.d <- runif(1) | 326 u.d <- runif(1) |
298 if (u.d < death.prob) { | 327 if (u.d < death.probability) { |
299 death.vector <- c(death.vector, i) | 328 death.vector <- c(death.vector, i) |
300 } | 329 } |
301 else { | 330 else { |
302 # Aggregrate index of dead bug. | 331 # Aggregrate index of dead bug. |
303 # Event 1 end of diapause. | 332 # Event 1 end of diapause. |
304 if (vector.ind[1] == 0 && vector.ind[2] == 3) { | 333 if (vector.individual[1] == 0 && vector.individual[2] == 3) { |
305 # Overwintering adult (previttelogenic). | 334 # Overwintering adult (previttelogenic). |
306 if (photoperiod > opt$photoperiod && vector.ind[3] > 68 && doy < 180) { | 335 if (photoperiod > opt$photoperiod && vector.individual[3] > 68 && doy < 180) { |
307 # Add 68C to become fully reproductively matured. | 336 # Add 68C to become fully reproductively matured. |
308 # Transfer to vittelogenic. | 337 # Transfer to vittelogenic. |
309 vector.ind <- c(0, 4, 0, 0, 0) | 338 vector.individual <- c(0, 4, 0, 0, 0) |
310 vector.matrix[i,] <- vector.ind | 339 vector.matrix[i,] <- vector.individual |
311 } | 340 } |
312 else { | 341 else { |
313 # Add to degree_days. | 342 # Add to degree_days. |
314 vector.ind[3] <- vector.ind[3] + degree_days.temp | 343 vector.individual[3] <- vector.individual[3] + degree_days.temp |
315 # Add 1 day in current stage. | 344 # Add 1 day in current stage. |
316 vector.ind[4] <- vector.ind[4] + 1 | 345 vector.individual[4] <- vector.individual[4] + 1 |
317 vector.matrix[i,] <- vector.ind | 346 vector.matrix[i,] <- vector.individual |
318 } | 347 } |
319 } | 348 } |
320 if (vector.ind[1] != 0 && vector.ind[2] == 3) { | 349 if (vector.individual[1] != 0 && vector.individual[2] == 3) { |
321 # Not overwintering adult (previttelogenic). | 350 # Not overwintering adult (previttelogenic). |
322 current.gen <- vector.ind[1] | 351 current.gen <- vector.individual[1] |
323 if (vector.ind[3] > 68) { | 352 if (vector.individual[3] > 68) { |
324 # Add 68C to become fully reproductively matured. | 353 # Add 68C to become fully reproductively matured. |
325 # Transfer to vittelogenic. | 354 # Transfer to vittelogenic. |
326 vector.ind <- c(current.gen, 4, 0, 0, 0) | 355 vector.individual <- c(current.gen, 4, 0, 0, 0) |
327 vector.matrix[i,] <- vector.ind | 356 vector.matrix[i,] <- vector.individual |
328 } | 357 } |
329 else { | 358 else { |
330 # Add to degree_days. | 359 # Add to degree_days. |
331 vector.ind[3] <- vector.ind[3] + degree_days.temp | 360 vector.individual[3] <- vector.individual[3] + degree_days.temp |
332 # Add 1 day in current stage. | 361 # Add 1 day in current stage. |
333 vector.ind[4] <- vector.ind[4] + 1 | 362 vector.individual[4] <- vector.individual[4] + 1 |
334 vector.matrix[i,] <- vector.ind | 363 vector.matrix[i,] <- vector.individual |
335 } | 364 } |
336 } | 365 } |
337 # Event 2 oviposition -- where population dynamics comes from. | 366 # Event 2 oviposition -- where population dynamics comes from. |
338 if (vector.ind[2] == 4 && vector.ind[1] == 0 && mean.temp > 10) { | 367 if (vector.individual[2] == 4 && vector.individual[1] == 0 && mean.temp > 10) { |
339 # Vittelogenic stage, overwintering generation. | 368 # Vittelogenic stage, overwintering generation. |
340 if (vector.ind[4] == 0) { | 369 if (vector.individual[4] == 0) { |
341 # Just turned in vittelogenic stage. | 370 # Just turned in vittelogenic stage. |
342 num_insects.birth = round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) | 371 num_insects.birth = round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) |
343 } | 372 } |
344 else { | 373 else { |
345 # Daily probability of birth. | 374 # Daily probability of birth. |
348 if (u1 < p.birth) { | 377 if (u1 < p.birth) { |
349 num_insects.birth = round(runif(1, 2, 8)) | 378 num_insects.birth = round(runif(1, 2, 8)) |
350 } | 379 } |
351 } | 380 } |
352 # Add to degree_days. | 381 # Add to degree_days. |
353 vector.ind[3] <- vector.ind[3] + degree_days.temp | 382 vector.individual[3] <- vector.individual[3] + degree_days.temp |
354 # Add 1 day in current stage. | 383 # Add 1 day in current stage. |
355 vector.ind[4] <- vector.ind[4] + 1 | 384 vector.individual[4] <- vector.individual[4] + 1 |
356 vector.matrix[i,] <- vector.ind | 385 vector.matrix[i,] <- vector.individual |
357 if (num_insects.birth > 0) { | 386 if (num_insects.birth > 0) { |
358 # Add new birth -- might be in different generations. | 387 # Add new birth -- might be in different generations. |
359 new.gen <- vector.ind[1] + 1 | 388 new.gen <- vector.individual[1] + 1 |
360 # Egg profile. | 389 # Egg profile. |
361 new.ind <- c(new.gen, 0, 0, 0, 0) | 390 new.individual <- c(new.gen, 0, 0, 0, 0) |
362 new.vector <- rep(new.ind, num_insects.birth) | 391 new.vector <- rep(new.individual, num_insects.birth) |
363 # Update batch of egg profile. | 392 # Update batch of egg profile. |
364 new.vector <- t(matrix(new.vector, nrow=5)) | 393 new.vector <- t(matrix(new.vector, nrow=5)) |
365 # Group with total eggs laid in that day. | 394 # Group with total eggs laid in that day. |
366 birth.vector <- rbind(birth.vector, new.vector) | 395 birth.vector <- rbind(birth.vector, new.vector) |
367 } | 396 } |
368 } | 397 } |
369 # Event 2 oviposition -- for generation 1. | 398 # Event 2 oviposition -- for generation 1. |
370 if (vector.ind[2] == 4 && vector.ind[1] == 1 && mean.temp > 12.5 && doy < 222) { | 399 if (vector.individual[2] == 4 && vector.individual[1] == 1 && mean.temp > 12.5 && doy < 222) { |
371 # Vittelogenic stage, 1st generation | 400 # Vittelogenic stage, 1st generation |
372 if (vector.ind[4] == 0) { | 401 if (vector.individual[4] == 0) { |
373 # Just turned in vittelogenic stage. | 402 # Just turned in vittelogenic stage. |
374 num_insects.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) | 403 num_insects.birth = round(runif(1, 2+opt$min_clutch_size, 8+opt$max_clutch_size)) |
375 } | 404 } |
376 else { | 405 else { |
377 # Daily probability of birth. | 406 # Daily probability of birth. |
378 p.birth = opt$oviposition * 0.01 | 407 p.birth = opt$oviposition * 0.01 |
379 u1 <- runif(1) | 408 u1 <- runif(1) |
380 if (u1 < p.birth) { | 409 if (u1 < p.birth) { |
381 num_insects.birth = round(runif(1, 2, 8)) | 410 num_insects.birth = round(runif(1, 2, 8)) |
382 } | 411 } |
383 } | 412 } |
384 # Add to degree_days. | 413 # Add to degree_days. |
385 vector.ind[3] <- vector.ind[3] + degree_days.temp | 414 vector.individual[3] <- vector.individual[3] + degree_days.temp |
386 # Add 1 day in current stage. | 415 # Add 1 day in current stage. |
387 vector.ind[4] <- vector.ind[4] + 1 | 416 vector.individual[4] <- vector.individual[4] + 1 |
388 vector.matrix[i,] <- vector.ind | 417 vector.matrix[i,] <- vector.individual |
389 if (num_insects.birth > 0) { | 418 if (num_insects.birth > 0) { |
390 # Add new birth -- might be in different generations. | 419 # Add new birth -- might be in different generations. |
391 new.gen <- vector.ind[1] + 1 | 420 new.gen <- vector.individual[1] + 1 |
392 # Egg profile. | 421 # Egg profile. |
393 new.ind <- c(new.gen, 0, 0, 0, 0) | 422 new.individual <- c(new.gen, 0, 0, 0, 0) |
394 new.vector <- rep(new.ind, num_insects.birth) | 423 new.vector <- rep(new.individual, num_insects.birth) |
395 # Update batch of egg profile. | 424 # Update batch of egg profile. |
396 new.vector <- t(matrix(new.vector, nrow=5)) | 425 new.vector <- t(matrix(new.vector, nrow=5)) |
397 # Group with total eggs laid in that day. | 426 # Group with total eggs laid in that day. |
398 birth.vector <- rbind(birth.vector, new.vector) | 427 birth.vector <- rbind(birth.vector, new.vector) |
399 } | 428 } |
400 } | 429 } |
401 # Event 3 development (with diapause determination). | 430 # Event 3 development (with diapause determination). |
402 # Event 3.1 egg development to young nymph (vector.ind[2]=0 -> egg). | 431 # Event 3.1 egg development to young nymph (vector.individual[2]=0 -> egg). |
403 if (vector.ind[2] == 0) { | 432 if (vector.individual[2] == 0) { |
404 # Egg stage. | 433 # Egg stage. |
405 # Add to degree_days. | 434 # Add to degree_days. |
406 vector.ind[3] <- vector.ind[3] + degree_days.temp | 435 vector.individual[3] <- vector.individual[3] + degree_days.temp |
407 if (vector.ind[3] >= (68 + opt$young_nymph_accum)) { | 436 if (vector.individual[3] >= (68+opt$young_nymph_accumulation)) { |
408 # From egg to young nymph, degree-days requirement met. | 437 # From egg to young nymph, degree-days requirement met. |
409 current.gen <- vector.ind[1] | 438 current.gen <- vector.individual[1] |
410 # Transfer to young nymph stage. | 439 # Transfer to young nymph stage. |
411 vector.ind <- c(current.gen, 1, 0, 0, 0) | 440 vector.individual <- c(current.gen, 1, 0, 0, 0) |
412 } | 441 } |
413 else { | 442 else { |
414 # Add 1 day in current stage. | 443 # Add 1 day in current stage. |
415 vector.ind[4] <- vector.ind[4] + 1 | 444 vector.individual[4] <- vector.individual[4] + 1 |
416 } | 445 } |
417 vector.matrix[i,] <- vector.ind | 446 vector.matrix[i,] <- vector.individual |
418 } | 447 } |
419 # Event 3.2 young nymph to old nymph (vector.ind[2]=1 -> young nymph: determines diapause). | 448 # Event 3.2 young nymph to old nymph (vector.individual[2]=1 -> young nymph: determines diapause). |
420 if (vector.ind[2] == 1) { | 449 if (vector.individual[2] == 1) { |
421 # Young nymph stage. | 450 # Young nymph stage. |
422 # Add to degree_days. | 451 # Add to degree_days. |
423 vector.ind[3] <- vector.ind[3] + degree_days.temp | 452 vector.individual[3] <- vector.individual[3] + degree_days.temp |
424 if (vector.ind[3] >= (250 + opt$old_nymph_accum)) { | 453 if (vector.individual[3] >= (250+opt$old_nymph_accumulation)) { |
425 # From young to old nymph, degree_days requirement met. | 454 # From young to old nymph, degree_days requirement met. |
426 current.gen <- vector.ind[1] | 455 current.gen <- vector.individual[1] |
427 # Transfer to old nym stage. | 456 # Transfer to old nym stage. |
428 vector.ind <- c(current.gen, 2, 0, 0, 0) | 457 vector.individual <- c(current.gen, 2, 0, 0, 0) |
429 if (photoperiod < opt$photoperiod && doy > 180) { | 458 if (photoperiod < opt$photoperiod && doy > 180) { |
430 vector.ind[5] <- 1 | 459 vector.individual[5] <- 1 |
431 } # Prepare for diapausing. | 460 } # Prepare for diapausing. |
432 } | 461 } |
433 else { | 462 else { |
434 # Add 1 day in current stage. | 463 # Add 1 day in current stage. |
435 vector.ind[4] <- vector.ind[4] + 1 | 464 vector.individual[4] <- vector.individual[4] + 1 |
436 } | 465 } |
437 vector.matrix[i,] <- vector.ind | 466 vector.matrix[i,] <- vector.individual |
438 } | 467 } |
439 # Event 3.3 old nymph to adult: previttelogenic or diapausing? | 468 # Event 3.3 old nymph to adult: previttelogenic or diapausing? |
440 if (vector.ind[2] == 2) { | 469 if (vector.individual[2] == 2) { |
441 # Old nymph stage. | 470 # Old nymph stage. |
442 # Add to degree_days. | 471 # Add to degree_days. |
443 vector.ind[3] <- vector.ind[3] + degree_days.temp | 472 vector.individual[3] <- vector.individual[3] + degree_days.temp |
444 if (vector.ind[3] >= (200 + opt$adult_accum)) { | 473 if (vector.individual[3] >= (200+opt$adult_accumulation)) { |
445 # From old to adult, degree_days requirement met. | 474 # From old to adult, degree_days requirement met. |
446 current.gen <- vector.ind[1] | 475 current.gen <- vector.individual[1] |
447 if (vector.ind[5] == 0) { | 476 if (vector.individual[5] == 0) { |
448 # Non-diapausing adult -- previttelogenic. | 477 # Non-diapausing adult -- previttelogenic. |
449 vector.ind <- c(current.gen, 3, 0, 0, 0) | 478 vector.individual <- c(current.gen, 3, 0, 0, 0) |
450 } | 479 } |
451 else { | 480 else { |
452 # Diapausing. | 481 # Diapausing. |
453 vector.ind <- c(current.gen, 5, 0, 0, 1) | 482 vector.individual <- c(current.gen, 5, 0, 0, 1) |
454 } | 483 } |
455 } | 484 } |
456 else { | 485 else { |
457 # Add 1 day in current stage. | 486 # Add 1 day in current stage. |
458 vector.ind[4] <- vector.ind[4] + 1 | 487 vector.individual[4] <- vector.individual[4] + 1 |
459 } | 488 } |
460 vector.matrix[i,] <- vector.ind | 489 vector.matrix[i,] <- vector.individual |
461 } | 490 } |
462 # Event 4 growing of diapausing adult (unimportant, but still necessary). | 491 # Event 4 growing of diapausing adult (unimportant, but still necessary). |
463 if (vector.ind[2] == 5) { | 492 if (vector.individual[2] == 5) { |
464 vector.ind[3] <- vector.ind[3] + degree_days.temp | 493 vector.individual[3] <- vector.individual[3] + degree_days.temp |
465 vector.ind[4] <- vector.ind[4] + 1 | 494 vector.individual[4] <- vector.individual[4] + 1 |
466 vector.matrix[i,] <- vector.ind | 495 vector.matrix[i,] <- vector.individual |
467 } | 496 } |
468 } # Else if it is still alive. | 497 } # Else if it is still alive. |
469 } # End of the individual bug loop. | 498 } # End of the individual bug loop. |
470 # Find the number of deaths. | 499 # Find the number of deaths. |
471 num_insects.death <- length(death.vector) | 500 num_insects.death <- length(death.vector) |
472 if (num_insects.death > 0) { | 501 if (num_insects.death > 0) { |
473 # Remove record of dead. | 502 # Remove record of dead. |
474 vector.matrix <- vector.matrix[-death.vector, ] | 503 vector.matrix <- vector.matrix[-death.vector, ] |
475 } | 504 } |
476 # Find the number of births. | 505 # Find the number of births. |
477 num_insects.newborn <- length(birth.vector[,1]) | 506 num_insects.newborn <- length(birth.vector[,1]) |
478 vector.matrix <- rbind(vector.matrix, birth.vector) | 507 vector.matrix <- rbind(vector.matrix, birth.vector) |
479 # Update population size for the next day. | 508 # Update population size for the next day. |
480 num_insects <- num_insects - num_insects.death + num_insects.newborn | 509 num_insects <- num_insects - num_insects.death + num_insects.newborn |
481 | 510 |
482 # Aggregate results by day. | 511 # Aggregate results by day. |
483 total.population <- c(total.population, num_insects) | 512 total.population <- c(total.population, num_insects) |
484 | |
485 # All adults population size. | 513 # All adults population size. |
486 num_insects.adult <- sum(vector.matrix[,2] == 3) + sum(vector.matrix[,2] == 4) + sum(vector.matrix[,2] == 5) | 514 num_insects.adult <- sum(vector.matrix[,2]==3)+sum(vector.matrix[,2]==4)+sum(vector.matrix[,2]==5) |
487 | |
488 # Overwintering adult population size. | 515 # Overwintering adult population size. |
489 overwintering_adult.population[row] <- sum(vector.matrix[,1] == 0) | 516 overwintering_adult.population[row] <- sum(vector.matrix[,1]==0) |
490 # First generation population size. | 517 # First generation population size. |
491 first_generation.population[row] <- sum(vector.matrix[,1] == 1) | 518 first_generation.population[row] <- sum(vector.matrix[,1]==1) |
492 # Second generation population size. | 519 # Second generation population size. |
493 second_generation.population[row] <- sum(vector.matrix[,1] == 2) | 520 second_generation.population[row] <- sum(vector.matrix[,1]==2) |
494 | |
495 # Egg population size. | 521 # Egg population size. |
496 S0[row] <- sum(vector.matrix[,2]==0) | 522 Eggs[row] <- sum(vector.matrix[,2]==0) |
497 # Young nymph population size. | 523 # Young nymph population size. |
498 S1[row] <- sum(vector.matrix[,2]==1) | 524 YoungNymphs[row] <- sum(vector.matrix[,2]==1) |
499 # Old nymph population size. | 525 # Old nymph population size. |
500 S2[row] <- sum(vector.matrix[,2]==2) | 526 OldNymphs[row] <- sum(vector.matrix[,2]==2) |
501 # Previtellogenic population size. | 527 # Previtellogenic population size. |
502 S3[row] <- sum(vector.matrix[,2]==3) | 528 Previtellogenic[row] <- sum(vector.matrix[,2]==3) |
503 # Vitellogenic population size. | 529 # Vitellogenic population size. |
504 S4[row] <- sum(vector.matrix[,2]==4) | 530 Vitellogenic[row] <- sum(vector.matrix[,2]==4) |
505 # Diapausing population size. | 531 # Diapausing population size. |
506 S5[row] <- sum(vector.matrix[,2]==5) | 532 Diapausing[row] <- sum(vector.matrix[,2]==5) |
507 | 533 # P adult population size. |
508 P.adult[row] <- sum(vector.matrix[,1]==0) | 534 P.adult[row] <- sum(vector.matrix[,1]==0) |
535 # F1 adult population size. | |
509 F1.adult[row] <- sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5)) | 536 F1.adult[row] <- sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5)) |
537 # F2 adult population size | |
510 F2.adult[row] <- sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5)) | 538 F2.adult[row] <- sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5)) |
511 | 539 # Newborn population size. |
512 N.newborn[row] <- num_insects.newborn | 540 N.newborn[row] <- num_insects.newborn |
541 # Dead population size. | |
513 N.death[row] <- num_insects.death | 542 N.death[row] <- num_insects.death |
543 # Adult population size. | |
514 N.adult[row] <- num_insects.adult | 544 N.adult[row] <- num_insects.adult |
515 } # end of days specified in the input temperature data | 545 } # End of days specified in the input temperature data. |
516 | 546 |
517 degree_days.cum <- cumsum(degree_days.day) | 547 degree_days.cum <- cumsum(degree_days.day) |
518 | 548 |
519 # Collect all the outputs. | 549 # Define the output values. |
520 S0.replications[,N.replications] <- S0 | 550 Eggs.replications[,N.replications] <- Eggs |
521 S1.replications[,N.replications] <- S1 | 551 YoungNymphs.replications[,N.replications] <- YoungNymphs |
522 S2.replications[,N.replications] <- S2 | 552 OldNymphs.replications[,N.replications] <- OldNymphs |
523 S3.replications[,N.replications] <- S3 | 553 Previtellogenic.replications[,N.replications] <- Previtellogenic |
524 S4.replications[,N.replications] <- S4 | 554 Vitellogenic.replications[,N.replications] <- Vitellogenic |
525 S5.replications[,N.replications] <- S5 | 555 Diapausing.replications[,N.replications] <- Diapausing |
526 newborn.replications[,N.replications] <- N.newborn | 556 newborn.replications[,N.replications] <- N.newborn |
527 death.replications[,N.replications] <- N.death | 557 death.replications[,N.replications] <- N.death |
528 adult.replications[,N.replications] <- N.adult | 558 adult.replications[,N.replications] <- N.adult |
529 pop.replications[,N.replications] <- total.population | 559 population.replications[,N.replications] <- total.population |
530 P.replications[,N.replications] <- overwintering_adult.population | 560 P.replications[,N.replications] <- overwintering_adult.population |
531 F1.replications[,N.replications] <- first_generation.population | 561 F1.replications[,N.replications] <- first_generation.population |
532 F2.replications[,N.replications] <- second_generation.population | 562 F2.replications[,N.replications] <- second_generation.population |
533 P_adults.replications[,N.replications] <- P.adult | 563 P_adults.replications[,N.replications] <- P.adult |
534 F1_adults.replications[,N.replications] <- F1.adult | 564 F1_adults.replications[,N.replications] <- F1.adult |
535 F2_adults.replications[,N.replications] <- F2.adult | 565 F2_adults.replications[,N.replications] <- F2.adult |
536 } | 566 } |
537 | 567 |
538 # Mean value for adults. | 568 # Mean value for adults. |
539 adults <- apply((S3.replications + S4.replications + S5.replications), 1, mean) | 569 adults <- apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, mean) |
540 # Mean value for nymphs. | 570 # Mean value for nymphs. |
541 nymphs <- apply((S1.replications + S2.replications), 1, mean) | 571 nymphs <- apply((YoungNymphs.replications+OldNymphs.replications), 1, mean) |
542 # Mean value for eggs. | 572 # Mean value for eggs. |
543 eggs <- apply(S0.replications, 1, mean) | 573 eggs <- apply(Eggs.replications, 1, mean) |
544 # Mean value for P. | 574 # Mean value for P. |
545 P <- apply(P.replications, 1, mean) | 575 P <- apply(P.replications, 1, mean) |
546 # Mean value for F1. | 576 # Mean value for F1. |
547 F1 <- apply(F1.replications, 1, mean) | 577 F1 <- apply(F1.replications, 1, mean) |
548 # Mean value for F2. | 578 # Mean value for F2. |
551 P_adults <- apply(P_adults.replications, 1, mean) | 581 P_adults <- apply(P_adults.replications, 1, mean) |
552 # Mean value for F1 adults. | 582 # Mean value for F1 adults. |
553 F1_adults <- apply(F1_adults.replications, 1, mean) | 583 F1_adults <- apply(F1_adults.replications, 1, mean) |
554 # Mean value for F2 adults. | 584 # Mean value for F2 adults. |
555 F2_adults <- apply(F2_adults.replications, 1, mean) | 585 F2_adults <- apply(F2_adults.replications, 1, mean) |
556 | |
557 # Standard error for adults. | 586 # Standard error for adults. |
558 adults.std_error <- apply((S3.replications + S4.replications + S5.replications), 1, sd) / sqrt(opt$replications) | 587 adults.std_error <- apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, sd) / sqrt(opt$replications) |
559 # Standard error for nymphs. | 588 # Standard error for nymphs. |
560 nymphs.std_error <- apply((S1.replications + S2.replications) / sqrt(opt$replications), 1, sd) | 589 nymphs.std_error <- apply((YoungNymphs.replications+OldNymphs.replications) / sqrt(opt$replications), 1, sd) |
561 # Standard error for eggs. | 590 # Standard error for eggs. |
562 eggs.std_error <- apply(S0.replications, 1, sd) / sqrt(opt$replications) | 591 eggs.std_error <- apply(Eggs.replications, 1, sd) / sqrt(opt$replications) |
563 # Standard error value for P. | 592 # Standard error value for P. |
564 P.std_error <- apply(P.replications, 1, sd) / sqrt(opt$replications) | 593 P.std_error <- apply(P.replications, 1, sd) / sqrt(opt$replications) |
565 # Standard error for F1. | 594 # Standard error for F1. |
566 F1.std_error <- apply(F1.replications, 1, sd) / sqrt(opt$replications) | 595 F1.std_error <- apply(F1.replications, 1, sd) / sqrt(opt$replications) |
567 # Standard error for F2. | 596 # Standard error for F2. |
571 # Standard error for F1 adult. | 600 # Standard error for F1 adult. |
572 F1_adults.std_error <- apply(F1_adults.replications, 1, sd) / sqrt(opt$replications) | 601 F1_adults.std_error <- apply(F1_adults.replications, 1, sd) / sqrt(opt$replications) |
573 # Standard error for F2 adult. | 602 # Standard error for F2 adult. |
574 F2_adults.std_error <- apply(F2_adults.replications, 1, sd) / sqrt(opt$replications) | 603 F2_adults.std_error <- apply(F2_adults.replications, 1, sd) / sqrt(opt$replications) |
575 | 604 |
576 dev.new(width=20, height=30) | 605 dev.new(width=20, height=40) |
577 | 606 |
578 # Start PDF device driver to save charts to output. | 607 # Start PDF device driver to save charts to output. |
579 pdf(file=opt$output, width=20, height=30, bg="white") | 608 pdf(file=opt$output, width=20, height=40, bg="white") |
580 | |
581 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)) | 609 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)) |
582 | 610 |
583 # Data analysis and visualization plots | 611 # Data analysis and visualization plots |
584 # only within a single calendar year. | 612 # only within a single calendar year. |
585 day.all <- c(1:opt$num_days) | 613 day.all <- c(1:opt$num_days) |
586 start_date <- temperature_data_frame$DATE[1] | 614 start_date <- temperature_data_frame$DATE[1] |
587 end_date <- temperature_data_frame$DATE[opt$num_days] | 615 end_date <- temperature_data_frame$DATE[opt$num_days] |
588 | 616 |
589 # Subfigure 1: population size by life stage | 617 # Subfigure 1: population size by life stage |
590 title <- paste(opt$insect, ": Total pop. by life stage :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | 618 maxval <- max(eggs+eggs.std_error, nymphs+nymphs.std_error, adults+adults.std_error) |
591 plot(day.all, adults, main=title, type="l", ylim=c(0, max(eggs + eggs.std_error, nymphs + nymphs.std_error, adults + adults.std_error)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) | 619 render_chart("pop_size_by_life_stage", opt$insect, opt$location, latitude, start_date, end_date, days.all, maxval, |
592 # Young and old nymphs. | 620 opt$std_error_plot, adults, nymphs, eggs, adults.std_error, nymphs.std_error, eggs.std_error) |
593 lines(day.all, nymphs, lwd=2, lty=1, col=2) | |
594 # Eggs | |
595 lines(day.all, eggs, lwd=2, lty=1, col=4) | |
596 axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
597 axis(2, cex.axis=3) | |
598 legend("topleft", c("Egg", "Nymph", "Adult"), lty=c(1, 1, 1), col=c(4, 2, 1), cex=3) | |
599 if (opt$std_error_plot == 1) { | |
600 # Add Standard error lines to plot | |
601 # Standard error for adults | |
602 lines (day.all, adults+adults.std_error, lty=2) | |
603 lines (day.all, adults-adults.std_error, lty=2) | |
604 # Standard error for nymphs | |
605 lines (day.all, nymphs+nymphs.std_error, col=2, lty=2) | |
606 lines (day.all, nymphs-nymphs.std_error, col=2, lty=2) | |
607 # Standard error for eggs | |
608 lines (day.all, eggs+eggs.std_error, col=4, lty=2) | |
609 lines (day.all, eggs-eggs.std_error, col=4, lty=2) | |
610 } | |
611 | 621 |
612 # Subfigure 2: population size by generation | 622 # Subfigure 2: population size by generation |
613 title <- paste(opt$insect, ": Total pop. by generation :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | 623 maxval <- max(F2) |
614 plot(day.all, P, main=title, type="l", ylim=c(0, max(F2)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) | 624 render_chart("pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days.all, maxval, |
615 lines(day.all, F1, lwd = 2, lty = 1, col=2) | 625 opt$std_error_plot, P, F1, F2, P.std_error, F1.std_error, F2.std_error) |
616 lines(day.all, F2, lwd = 2, lty = 1, col=4) | 626 |
617 axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
618 axis(2, cex.axis=3) | |
619 legend("topleft", c("P", "F1", "F2"), lty=c(1, 1, 1), col=c(1, 2, 4), cex=3) | |
620 if (opt$std_error_plot == 1) { | |
621 # Add Standard error lines to plot | |
622 # Standard error for adults | |
623 lines (day.all, P+P.std_error, lty=2) | |
624 lines (day.all, P-P.std_error, lty=2) | |
625 # Standard error for nymphs | |
626 lines (day.all, F1+F1.std_error, col=2, lty=2) | |
627 lines (day.all, F1-F1.std_error, col=2, lty=2) | |
628 # Standard error for eggs | |
629 lines (day.all, F2+F2.std_error, col=4, lty=2) | |
630 lines (day.all, F2-F2.std_error, col=4, lty=2) | |
631 } | |
632 | 627 |
633 # Subfigure 3: adult population size by generation | 628 # Subfigure 3: adult population size by generation |
634 title <- paste(opt$insect, ": Adult pop. by generation :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | 629 maxval <- max(F2_adults) + 100 |
635 plot(day.all, P_adults, ylim=c(0, max(F2_adults) + 100), main=title, type="l", axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) | 630 render_chart("adult_pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days.all, maxval, |
636 lines(day.all, F1_adults, lwd = 2, lty = 1, col=2) | 631 opt$std_error_plot, P_adults, F1_adults, F2_adults, P_adults.std_error, F1_adults.std_error, F2_adults2.std_error) |
637 lines(day.all, F2_adults, lwd = 2, lty = 1, col=4) | 632 |
638 axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
639 axis(2, cex.axis=3) | |
640 legend("topleft", c("P", "F1", "F2"), lty=c(1, 1, 1), col=c(1, 2, 4), cex=3) | |
641 if (opt$std_error_plot == 1) { | |
642 # Add Standard error lines to plot | |
643 # Standard error for adults | |
644 lines (day.all, P_adults+P_adults.std_error, lty=2) | |
645 lines (day.all, P_adults-P_adults.std_error, lty=2) | |
646 # Standard error for nymphs | |
647 lines (day.all, F1_adults+F1_adults.std_error, col=2, lty=2) | |
648 lines (day.all, F1_adults-F1_adults.std_error, col=2, lty=2) | |
649 # Standard error for eggs | |
650 lines (day.all, F2_adults+F2_adults.std_error, col=4, lty=2) | |
651 lines (day.all, F2_adults-F2_adults.std_error, col=4, lty=2) | |
652 } | |
653 | 633 |
654 # Turn off device driver to flush output. | 634 # Turn off device driver to flush output. |
655 dev.off() | 635 dev.off() |