Mercurial > repos > greg > insect_phenology_model
comparison insect_phenology_model.R @ 112:bcb12b7e8563 draft
Uploaded
author | greg |
---|---|
date | Tue, 29 May 2018 09:00:25 -0400 |
parents | 37ac68b6ff10 |
children | 9c998fd06628 |
comparison
equal
deleted
inserted
replaced
111:37ac68b6ff10 | 112:bcb12b7e8563 |
---|---|
4 | 4 |
5 option_list <- list( | 5 option_list <- list( |
6 make_option(c("--adult_mortality"), action="store", dest="adult_mortality", type="integer", help="Adjustment rate for adult mortality"), | 6 make_option(c("--adult_mortality"), action="store", dest="adult_mortality", type="integer", help="Adjustment rate for adult mortality"), |
7 make_option(c("--adult_accumulation"), action="store", dest="adult_accumulation", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"), | 7 make_option(c("--adult_accumulation"), action="store", dest="adult_accumulation", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"), |
8 make_option(c("--egg_mortality"), action="store", dest="egg_mortality", type="integer", help="Adjustment rate for egg mortality"), | 8 make_option(c("--egg_mortality"), action="store", dest="egg_mortality", type="integer", help="Adjustment rate for egg mortality"), |
9 make_option(c("--input"), action="store", dest="input", help="Temperature data for selected location"), | 9 make_option(c("--input_norm"), action="store", dest="input_norm", help="30 year normals temperature data for selected station"), |
10 make_option(c("--input_ytd"), action="store", dest="input_ytd", default=NULL, help="Year-to-date temperature data for selected location"), | |
10 make_option(c("--insect"), action="store", dest="insect", help="Insect name"), | 11 make_option(c("--insect"), action="store", dest="insect", help="Insect name"), |
11 make_option(c("--insects_per_replication"), action="store", dest="insects_per_replication", type="integer", help="Number of insects with which to start each replication"), | 12 make_option(c("--insects_per_replication"), action="store", dest="insects_per_replication", type="integer", help="Number of insects with which to start each replication"), |
12 make_option(c("--location"), action="store", dest="location", help="Selected location"), | 13 make_option(c("--life_stages"), action="store", dest="life_stages", help="Selected life stages for plotting"), |
14 make_option(c("--life_stages_adult"), action="store", dest="life_stages_adult", default=NULL, help="Adult life stages for plotting"), | |
15 make_option(c("--life_stages_nymph"), action="store", dest="life_stages_nymph", default=NULL, help="Nymph life stages for plotting"), | |
16 make_option(c("--location"), action="store", dest="location", default=NULL, help="Selected location"), | |
13 make_option(c("--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), | 17 make_option(c("--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), |
14 make_option(c("--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), | 18 make_option(c("--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), |
19 make_option(c("--num_days_ytd"), action="store", dest="num_days_ytd", default=NULL, type="integer", help="Total number of days in the year-to-date temperature dataset"), | |
15 make_option(c("--nymph_mortality"), action="store", dest="nymph_mortality", type="integer", help="Adjustment rate for nymph mortality"), | 20 make_option(c("--nymph_mortality"), action="store", dest="nymph_mortality", type="integer", help="Adjustment rate for nymph mortality"), |
16 make_option(c("--old_nymph_accumulation"), action="store", dest="old_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (young nymph->old nymph)"), | 21 make_option(c("--old_nymph_accumulation"), action="store", dest="old_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (young nymph->old nymph)"), |
17 make_option(c("--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"), | |
18 make_option(c("--output"), action="store", dest="output", help="Output dataset"), | |
19 make_option(c("--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), | 22 make_option(c("--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), |
20 make_option(c("--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), | 23 make_option(c("--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), |
24 make_option(c("--plot_generations_separately"), action="store", dest="plot_generations_separately", help="Plot Plot P, F1 and F2 as separate lines or pool across them"), | |
25 make_option(c("--plot_std_error"), action="store", dest="plot_std_error", help="Plot Standard error"), | |
21 make_option(c("--replications"), action="store", dest="replications", type="integer", help="Number of replications"), | 26 make_option(c("--replications"), action="store", dest="replications", type="integer", help="Number of replications"), |
22 make_option(c("--std_error_plot"), action="store", dest="std_error_plot", help="Plot Standard error"), | |
23 make_option(c("--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)") | 27 make_option(c("--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)") |
24 ) | 28 ) |
25 | 29 |
26 parser <- OptionParser(usage="%prog [options] file", option_list=option_list); | 30 parser <- OptionParser(usage="%prog [options] file", option_list=option_list); |
27 args <- parse_args(parser, positional_arguments=TRUE); | 31 args <- parse_args(parser, positional_arguments=TRUE); |
28 opt <- args$options; | 32 opt <- args$options; |
29 | 33 |
30 add_daylight_length = function(temperature_data_frame, num_columns, num_rows) { | 34 add_daylight_length = function(temperature_data_frame, num_rows) { |
31 # Return a vector of daylight length (photoperido profile) for | 35 # Return a vector of daylight length (photoperido profile) for |
32 # the number of days specified in the input temperature data | 36 # the number of days specified in the input_ytd temperature data |
33 # (from Forsythe 1995). | 37 # (from Forsythe 1995). |
34 p = 0.8333; | 38 p = 0.8333; |
35 latitude = temperature_data_frame$LATITUDE[1]; | 39 latitude = temperature_data_frame$LATITUDE[1]; |
36 daylight_length_vector = NULL; | 40 daylight_length_vector = NULL; |
37 for (i in 1:num_rows) { | 41 for (i in 1:num_rows) { |
43 # Compute the length of daylight for the day of the year. | 47 # Compute the length of daylight for the day of the year. |
44 darkness_length = 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi))); | 48 darkness_length = 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi))); |
45 daylight_length_vector[i] = 24 - darkness_length; | 49 daylight_length_vector[i] = 24 - darkness_length; |
46 } | 50 } |
47 # Append daylight_length_vector as a new column to temperature_data_frame. | 51 # Append daylight_length_vector as a new column to temperature_data_frame. |
48 temperature_data_frame[, num_columns+1] = daylight_length_vector; | 52 temperature_data_frame = append_vector(temperature_data_frame, daylight_length_vector, "DAYLEN"); |
49 return(temperature_data_frame); | 53 return(temperature_data_frame); |
50 } | 54 } |
51 | 55 |
52 dev.egg = function(temperature) { | 56 append_vector = function(data_frame, vec, new_column_name) { |
53 dev.rate = -0.9843 * temperature + 33.438; | 57 num_columns = dim(data_frame)[2]; |
54 return(dev.rate); | 58 current_column_names = colnames(data_frame); |
55 } | 59 # Append vector vec as a new column to data_frame. |
56 | 60 data_frame[,num_columns+1] = vec; |
57 dev.emerg = function(temperature) { | 61 # Reset the column names with the additional column for later access. |
58 emerg.rate = -0.5332 * temperature + 24.147; | 62 colnames(data_frame) = append(current_column_names, new_column_name); |
59 return(emerg.rate); | 63 return(data_frame); |
60 } | 64 } |
61 | 65 |
62 dev.old = function(temperature) { | 66 get_file_path = function(life_stage, base_name, life_stage_nymph=NULL, life_stage_adult=NULL) { |
63 n34 = -0.6119 * temperature + 17.602; | 67 if (!is.null(life_stage_nymph)) { |
64 n45 = -0.4408 * temperature + 19.036; | 68 lsi = get_life_stage_index(life_stage, life_stage_nymph=life_stage_nymph); |
65 dev.rate = mean(n34 + n45); | 69 file_name = paste(lsi, tolower(life_stage_nymph), base_name, sep="_"); |
66 return(dev.rate); | 70 } else if (!is.null(life_stage_adult)) { |
67 } | 71 lsi = get_life_stage_index(life_stage, life_stage_adult=life_stage_adult); |
68 | 72 file_name = paste(lsi, tolower(life_stage_adult), base_name, sep="_"); |
69 dev.young = function(temperature) { | 73 } else { |
70 n12 = -0.3728 * temperature + 14.68; | 74 lsi = get_life_stage_index(life_stage); |
71 n23 = -0.6119 * temperature + 25.249; | 75 file_name = paste(lsi, base_name, sep="_"); |
72 dev.rate = mean(n12 + n23); | 76 } |
73 return(dev.rate); | 77 file_path = paste("output_plots_dir", file_name, sep="/"); |
74 } | 78 return(file_path); |
75 | 79 } |
76 | 80 |
77 get_date_labels = function(temperature_data_frame, num_rows) { | 81 get_life_stage_index = function(life_stage, life_stage_nymph=NULL, life_stage_adult=NULL) { |
78 # Keep track of the years to see if spanning years. | 82 # Name collection elements so that they |
79 month_labels = list(); | 83 # are displayed in logical order. |
80 current_month_label = NULL; | 84 if (life_stage=="Egg") { |
81 for (i in 1:num_rows) { | 85 lsi = "01"; |
82 # Get the year and month from the date which | 86 } else if (life_stage=="Nymph") { |
83 # has the format YYYY-MM-DD. | 87 if (life_stage_nymph=="Young") { |
84 date = format(temperature_data_frame$DATE[i]); | 88 lsi = "02"; |
85 items = strsplit(date, "-")[[1]]; | 89 } else if (life_stage_nymph=="Old") { |
86 month = items[2]; | 90 lsi = "03"; |
87 month_label = month.abb[as.integer(month)]; | 91 } else if (life_stage_nymph=="Total") { |
88 if (!identical(current_month_label, month_label)) { | 92 lsi="04"; |
89 month_labels[length(month_labels)+1] = month_label; | 93 } |
90 current_month_label = month_label; | 94 } else if (life_stage=="Adult") { |
91 } | 95 if (life_stage_adult=="Pre-vittelogenic") { |
92 } | 96 lsi = "05"; |
93 return(c(unlist(month_labels))); | 97 } else if (life_stage_adult=="Vittelogenic") { |
98 lsi = "06"; | |
99 } else if (life_stage_adult=="Diapausing") { | |
100 lsi = "07"; | |
101 } else if (life_stage_adult=="Total") { | |
102 lsi = "08"; | |
103 } | |
104 } else if (life_stage=="Total") { | |
105 lsi = "09"; | |
106 } | |
107 return(lsi); | |
108 } | |
109 | |
110 get_mean_and_std_error = function(p_replications, f1_replications, f2_replications) { | |
111 # P mean. | |
112 p_m = apply(p_replications, 1, mean); | |
113 # P standard error. | |
114 p_se = apply(p_replications, 1, sd) / sqrt(opt$replications); | |
115 # F1 mean. | |
116 f1_m = apply(f1_replications, 1, mean); | |
117 # F1 standard error. | |
118 f1_se = apply(f1_replications, 1, sd) / sqrt(opt$replications); | |
119 # F2 mean. | |
120 f2_m = apply(f2_replications, 1, mean); | |
121 # F2 standard error. | |
122 f2_se = apply(f2_replications, 1, sd) / sqrt(opt$replications); | |
123 return(list(p_m, p_se, f1_m, f1_se, f2_m, f2_se)) | |
124 } | |
125 | |
126 get_next_normals_row = function(norm_data_frame, year, is_leap_year, index) { | |
127 # Return the next 30 year normals row formatted | |
128 # appropriately for the year-to-date data. | |
129 latitude = norm_data_frame[index,"LATITUDE"][1]; | |
130 longitude = norm_data_frame[index,"LONGITUDE"][1]; | |
131 # Format the date. | |
132 mmdd = norm_data_frame[index,"MMDD"][1]; | |
133 date_str = paste(year, mmdd, sep="-"); | |
134 doy = norm_data_frame[index,"DOY"][1]; | |
135 if (!is_leap_year) { | |
136 # Since all normals data includes Feb 29, we have to | |
137 # subtract 1 from DOY if we're not in a leap year since | |
138 # we removed the Feb 29 row from the data frame above. | |
139 doy = as.integer(doy) - 1; | |
140 } | |
141 tmin = norm_data_frame[index,"TMIN"][1]; | |
142 tmax = norm_data_frame[index,"TMAX"][1]; | |
143 return(list(latitude, longitude, date_str, doy, tmin, tmax)); | |
94 } | 144 } |
95 | 145 |
96 get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) { | 146 get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) { |
97 # Base development threshold for Brown Marmorated Stink Bug | 147 # Base development threshold for Brown Marmorated Stink Bug |
98 # insect phenology model. | 148 # insect phenology model. |
162 averages = sum(dh) / 24; | 212 averages = sum(dh) / 24; |
163 } | 213 } |
164 return(c(curr_mean_temp, averages)) | 214 return(c(curr_mean_temp, averages)) |
165 } | 215 } |
166 | 216 |
217 get_tick_index = function(index, last_tick, ticks, month_labels) { | |
218 # The R code tries hard not to draw overlapping tick labels, and so | |
219 # will omit labels where they would abut or overlap previously drawn | |
220 # labels. This can result in, for example, every other tick being | |
221 # labelled. We'll keep track of the last tick to make sure all of | |
222 # the month labels are displayed, and missing ticks are restricted | |
223 # to Sundays which have no labels anyway. | |
224 if (last_tick==0) { | |
225 return(length(ticks)+1); | |
226 } | |
227 last_saved_tick = ticks[[length(ticks)]]; | |
228 if (index-last_saved_tick<3) { | |
229 last_saved_month = month_labels[[length(month_labels)]]; | |
230 if (last_saved_month=="") { | |
231 # We're safe overwriting a tick | |
232 # with no label (i.e., a Sunday tick). | |
233 return(length(ticks)); | |
234 } else { | |
235 # Don't eliminate a Month label. | |
236 return(NULL); | |
237 } | |
238 } | |
239 return(length(ticks)+1); | |
240 } | |
241 | |
242 get_total_days = function(is_leap_year) { | |
243 # Get the total number of days in the current year. | |
244 if (is_leap_year) { | |
245 return(366); | |
246 } else { | |
247 return(365); | |
248 } | |
249 } | |
250 | |
251 get_x_axis_ticks_and_labels = function(temperature_data_frame, num_rows, start_doy_ytd, end_doy_ytd) { | |
252 # Keep track of the years to see if spanning years. | |
253 month_labels = list(); | |
254 ticks = list(); | |
255 current_month_label = NULL; | |
256 last_tick = 0; | |
257 for (i in 1:num_rows) { | |
258 if (start_doy_ytd > 1 & i==start_doy_ytd-1) { | |
259 # Add a tick for the end of the 30 year normnals data | |
260 # that was prepended to the year-to-date data. | |
261 tick_index = get_tick_index(i, last_tick, ticks, month_labels) | |
262 ticks[tick_index] = i; | |
263 month_labels[tick_index] = "End prepended 30 year normals"; | |
264 last_tick = i; | |
265 } else if (end_doy_ytd > 0 & i==end_doy_ytd+1) { | |
266 # Add a tick for the start of the 30 year normnals data | |
267 # that was appended to the year-to-date data. | |
268 tick_index = get_tick_index(i, last_tick, ticks, month_labels) | |
269 ticks[tick_index] = i; | |
270 month_labels[tick_index] = "Start appended 30 year normals"; | |
271 last_tick = i; | |
272 } else if (i==num_rows) { | |
273 # Add a tick for the last day of the year. | |
274 tick_index = get_tick_index(i, last_tick, ticks, month_labels) | |
275 ticks[tick_index] = i; | |
276 month_labels[tick_index] = ""; | |
277 last_tick = i; | |
278 } else { | |
279 # Get the year and month from the date which | |
280 # has the format YYYY-MM-DD. | |
281 date = format(temperature_data_frame$DATE[i]); | |
282 # Get the month label. | |
283 items = strsplit(date, "-")[[1]]; | |
284 month = items[2]; | |
285 month_label = month.abb[as.integer(month)]; | |
286 if (!identical(current_month_label, month_label)) { | |
287 # Add an x-axis tick for the month. | |
288 tick_index = get_tick_index(i, last_tick, ticks, month_labels) | |
289 ticks[tick_index] = i; | |
290 month_labels[tick_index] = month_label; | |
291 current_month_label = month_label; | |
292 last_tick = i; | |
293 } | |
294 tick_index = get_tick_index(i, last_tick, ticks, month_labels) | |
295 if (!is.null(tick_index)) { | |
296 # Get the day. | |
297 day = weekdays(as.Date(date)); | |
298 if (day=="Sunday") { | |
299 # Add an x-axis tick if we're on a Sunday. | |
300 ticks[tick_index] = i; | |
301 # Add a blank month label so it is not displayed. | |
302 month_labels[tick_index] = ""; | |
303 last_tick = i; | |
304 } | |
305 } | |
306 } | |
307 } | |
308 return(list(ticks, month_labels)); | |
309 } | |
310 | |
311 is_leap_year = function(date_str) { | |
312 # Extract the year from the date_str. | |
313 date = format(date_str); | |
314 items = strsplit(date, "-")[[1]]; | |
315 year = as.integer(items[1]); | |
316 if (((year %% 4 == 0) & (year %% 100 != 0)) | (year %% 400 == 0)) { | |
317 return(TRUE); | |
318 } else { | |
319 return(FALSE); | |
320 } | |
321 } | |
322 | |
167 mortality.adult = function(temperature) { | 323 mortality.adult = function(temperature) { |
168 if (temperature < 12.7) { | 324 if (temperature < 12.7) { |
169 mortality.probability = 0.002; | 325 mortality.probability = 0.002; |
170 } | 326 } |
171 else { | 327 else { |
195 mortality.probability = temperature * 0.0008 + 0.03; | 351 mortality.probability = temperature * 0.0008 + 0.03; |
196 } | 352 } |
197 return(mortality.probability); | 353 return(mortality.probability); |
198 } | 354 } |
199 | 355 |
200 parse_input_data = function(input_file, num_rows) { | 356 parse_input_data = function(input_ytd, input_norm, num_days_ytd, location) { |
201 # Read in the input temperature datafile into a data frame. | 357 if (is.null(input_ytd)) { |
202 temperature_data_frame = read.csv(file=input_file, header=T, strip.white=TRUE, sep=","); | 358 # We're analysing only the 30 year normals data, so create an empty |
203 num_columns = dim(temperature_data_frame)[2]; | 359 # data frame for containing temperature data after it is converted |
204 if (num_columns == 6) { | 360 # from the 30 year normals format to the year-to-date format. |
205 # The input data has the following 6 columns: | 361 temperature_data_frame = data.frame(matrix(ncol=6, nrow=0)); |
362 colnames(temperature_data_frame) = c("LATITUDE", "LONGITUDE", "DATE", "DOY", "TMIN", "TMAX"); | |
363 # Base all dates on the current date since 30 year | |
364 # normals data does not include any dates. | |
365 year = format(Sys.Date(), "%Y"); | |
366 start_date = paste(year, "01", "01", sep="-"); | |
367 end_date = paste(year, "12", "31", sep="-"); | |
368 # Set invalid start and end DOY. | |
369 start_doy_ytd = 0; | |
370 end_doy_ytd = 0; | |
371 } else { | |
372 # Read the input_ytd temperature datafile into a data frame. | |
373 # The input_ytd data has the following 6 columns: | |
206 # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX | 374 # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX |
207 # Set the column names for access when adding daylight length.. | 375 temperature_data_frame = read.csv(file=input_ytd, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=","); |
208 colnames(temperature_data_frame) = c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX"); | 376 # Set the temperature_data_frame column names for access. |
209 # Add a column containing the daylight length for each day. | 377 colnames(temperature_data_frame) = c("LATITUDE", "LONGITUDE", "DATE", "DOY", "TMIN", "TMAX"); |
210 temperature_data_frame = add_daylight_length(temperature_data_frame, num_columns, num_rows); | 378 # Get the start date. |
211 # Reset the column names with the additional column for later access. | 379 start_date = temperature_data_frame$DATE[1]; |
212 colnames(temperature_data_frame) = c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN"); | 380 end_date = temperature_data_frame$DATE[num_days_ytd]; |
213 } | 381 # Extract the year from the start date. |
214 return(temperature_data_frame); | 382 date_str = format(start_date); |
215 } | 383 date_str_items = strsplit(date_str, "-")[[1]]; |
216 | 384 year = date_str_items[1]; |
217 | 385 # Save the first DOY to later check if start_date is Jan 1. |
218 render_chart = function(chart_type, insect, location, latitude, start_date, end_date, days, maxval, plot_std_error, | 386 start_doy_ytd = as.integer(temperature_data_frame$DOY[1]); |
219 group1, group2, group3, group1_std_error, group2_std_error, group3_std_error, date_labels) { | 387 end_doy_ytd = as.integer(temperature_data_frame$DOY[num_days_ytd]); |
220 if (chart_type == "pop_size_by_life_stage") { | 388 } |
221 title = paste(insect, ": Total pop. by life stage :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" "); | 389 # See if we're in a leap year. |
222 legend_text = c("Egg", "Nymph", "Adult"); | 390 is_leap_year = is_leap_year(start_date); |
223 columns = c(4, 2, 1); | 391 # Get the number of days in the year. |
224 } else if (chart_type == "pop_size_by_generation") { | 392 total_days = get_total_days(is_leap_year); |
225 title = paste(insect, ": Total pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" "); | 393 # Read the input_norm temperature datafile into a data frame. |
394 # The input_norm data has the following 10 columns: | |
395 # STATIONID, LATITUDE, LONGITUDE, ELEV_M, NAME, ST, MMDD, DOY, TMIN, TMAX | |
396 norm_data_frame = read.csv(file=input_norm, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=","); | |
397 # Set the norm_data_frame column names for access. | |
398 colnames(norm_data_frame) = c("STATIONID", "LATITUDE","LONGITUDE", "ELEV_M", "NAME", "ST", "MMDD", "DOY", "TMIN", "TMAX"); | |
399 # All normals data includes Feb 29 which is row 60 in | |
400 # the data, so delete that row if we're not in a leap year. | |
401 if (!is_leap_year) { | |
402 norm_data_frame = norm_data_frame[-c(60),]; | |
403 } | |
404 # Set the location to be the station name if the user elected no to enter it. | |
405 if (is.null(location) | length(location)==0) { | |
406 location = norm_data_frame$NAME[1]; | |
407 } | |
408 if (is.null(input_ytd)) { | |
409 # Convert the 30 year normals data to the year-to-date format. | |
410 for (i in 1:total_days) { | |
411 temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); | |
412 } | |
413 } else { | |
414 # Merge the year-to-date data with the 30 year normals data. | |
415 if (start_doy_ytd > 1) { | |
416 # The year-to-date data starts after Jan 1, so create a | |
417 # temporary data frame to contain the 30 year normals data | |
418 # from Jan 1 to the date immediately prior to start_date. | |
419 tmp_data_frame = temperature_data_frame[FALSE,]; | |
420 for (i in 1:start_doy_ytd-1) { | |
421 tmp_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); | |
422 } | |
423 # Next merge the temporary data frame with the year-to-date data frame. | |
424 temperature_data_frame = rbind(tmp_data_frame, temperature_data_frame); | |
425 } | |
426 # Define the next row for the year-to-date data from the 30 year normals data. | |
427 first_normals_append_row = end_doy_ytd + 1; | |
428 # Append the 30 year normals data to the year-to-date data. | |
429 for (i in first_normals_append_row:total_days) { | |
430 temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); | |
431 } | |
432 } | |
433 # Add a column containing the daylight length for each day. | |
434 temperature_data_frame = add_daylight_length(temperature_data_frame, total_days); | |
435 return(list(temperature_data_frame, start_date, end_date, start_doy_ytd, end_doy_ytd, is_leap_year, total_days, location)); | |
436 } | |
437 | |
438 render_chart = function(ticks, date_labels, chart_type, plot_std_error, insect, location, latitude, start_date, end_date, days, maxval, | |
439 replications, life_stage, group, group_std_error, group2=NULL, group2_std_error=NULL, group3=NULL, group3_std_error=NULL, | |
440 life_stages_adult=NULL, life_stages_nymph=NULL) { | |
441 if (chart_type=="pop_size_by_life_stage") { | |
442 if (life_stage=="Total") { | |
443 title = paste(insect, ": Reps", replications, ":", life_stage, "Pop :", location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" "); | |
444 legend_text = c("Egg", "Nymph", "Adult"); | |
445 columns = c(4, 2, 1); | |
446 plot(days, group, main=title, type="l", ylim=c(0, maxval), axes=FALSE, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3); | |
447 legend("topleft", legend_text, lty=c(1, 1, 1), col=columns, cex=3); | |
448 lines(days, group2, lwd=2, lty=1, col=2); | |
449 lines(days, group3, lwd=2, lty=1, col=4); | |
450 axis(side=1, at=ticks, labels=date_labels, las=2, font.axis=3, xpd=TRUE, cex=3, cex.lab=3, cex.axis=3, cex.main=3); | |
451 axis(side=2, font.axis=3, xpd=TRUE, cex=3, cex.lab=3, cex.axis=3, cex.main=3); | |
452 if (plot_std_error=="yes") { | |
453 # Standard error for group. | |
454 lines(days, group+group_std_error, lty=2); | |
455 lines(days, group-group_std_error, lty=2); | |
456 # Standard error for group2. | |
457 lines(days, group2+group2_std_error, col=2, lty=2); | |
458 lines(days, group2-group2_std_error, col=2, lty=2); | |
459 # Standard error for group3. | |
460 lines(days, group3+group3_std_error, col=4, lty=2); | |
461 lines(days, group3-group3_std_error, col=4, lty=2); | |
462 } | |
463 } else { | |
464 if (life_stage=="Egg") { | |
465 title = paste(insect, ": Reps", replications, ":", life_stage, "Pop :", location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" "); | |
466 legend_text = c(life_stage); | |
467 columns = c(4); | |
468 } else if (life_stage=="Nymph") { | |
469 stage = paste(life_stages_nymph, "Nymph Pop :", sep=" "); | |
470 title = paste(insect, ": Reps", replications, ":", stage, location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" "); | |
471 legend_text = c(paste(life_stages_nymph, life_stage, sep=" ")); | |
472 columns = c(2); | |
473 } else if (life_stage=="Adult") { | |
474 stage = paste(life_stages_adult, "Adult Pop", sep=" "); | |
475 title = paste(insect, ": Reps", replications, ":", stage, location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" "); | |
476 legend_text = c(paste(life_stages_adult, life_stage, sep=" ")); | |
477 columns = c(1); | |
478 } | |
479 plot(days, group, main=title, type="l", ylim=c(0, maxval), axes=FALSE, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3); | |
480 legend("topleft", legend_text, lty=c(1), col="black", cex=3); | |
481 axis(side=1, at=ticks, labels=date_labels, las=2, font.axis=3, xpd=TRUE, cex=3, cex.lab=3, cex.axis=3, cex.main=3); | |
482 axis(side=2, font.axis=3, xpd=TRUE, cex=3, cex.lab=3, cex.axis=3, cex.main=3); | |
483 if (plot_std_error=="yes") { | |
484 # Standard error for group. | |
485 lines(days, group+group_std_error, lty=2); | |
486 lines(days, group-group_std_error, lty=2); | |
487 } | |
488 } | |
489 } else if (chart_type=="pop_size_by_generation") { | |
490 if (life_stage=="Total") { | |
491 title_str = ": Total Pop by Gen :"; | |
492 } else if (life_stage=="Egg") { | |
493 title_str = ": Egg Pop by Gen :"; | |
494 } else if (life_stage=="Nymph") { | |
495 title_str = paste(":", life_stages_nymph, "Nymph Pop by Gen", ":", sep=" "); | |
496 } else if (life_stage=="Adult") { | |
497 title_str = paste(":", life_stages_adult, "Adult Pop by Gen", ":", sep=" "); | |
498 } | |
499 title = paste(insect, ": Reps", replications, title_str, location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" "); | |
226 legend_text = c("P", "F1", "F2"); | 500 legend_text = c("P", "F1", "F2"); |
227 columns = c(1, 2, 4); | 501 columns = c(1, 2, 4); |
228 } else if (chart_type == "adult_pop_size_by_generation") { | 502 plot(days, group, main=title, type="l", ylim=c(0, maxval), axes=FALSE, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3); |
229 title = paste(insect, ": Adult pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" "); | 503 legend("topleft", legend_text, lty=c(1, 1, 1), col=columns, cex=3); |
230 legend_text = c("P", "F1", "F2"); | 504 lines(days, group2, lwd=2, lty=1, col=2); |
231 columns = c(1, 2, 4); | 505 lines(days, group3, lwd=2, lty=1, col=4); |
232 } | 506 axis(side=1, at=ticks, labels=date_labels, las=2, font.axis=3, xpd=TRUE, cex=3, cex.lab=3, cex.axis=3, cex.main=3); |
233 plot(days, group1, main=title, type="l", ylim=c(0, maxval), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3); | 507 axis(side=2, font.axis=3, xpd=TRUE, cex=3, cex.lab=3, cex.axis=3, cex.main=3); |
234 legend("topleft", legend_text, lty=c(1, 1, 1), col=columns, cex=3); | 508 if (plot_std_error=="yes") { |
235 lines(days, group2, lwd=2, lty=1, col=2); | 509 # Standard error for group. |
236 lines(days, group3, lwd=2, lty=1, col=4); | 510 lines(days, group+group_std_error, lty=2); |
237 axis(1, at=c(1:length(date_labels)) * 30 - 15, cex.axis=3, labels=date_labels); | 511 lines(days, group-group_std_error, lty=2); |
238 axis(2, cex.axis=3); | 512 # Standard error for group2. |
239 if (plot_std_error==1) { | 513 lines(days, group2+group2_std_error, col=2, lty=2); |
240 # Standard error for group1. | 514 lines(days, group2-group2_std_error, col=2, lty=2); |
241 lines(days, group1+group1_std_error, lty=2); | 515 # Standard error for group3. |
242 lines(days, group1-group1_std_error, lty=2); | 516 lines(days, group3+group3_std_error, col=4, lty=2); |
243 # Standard error for group2. | 517 lines(days, group3-group3_std_error, col=4, lty=2); |
244 lines(days, group2+group2_std_error, col=2, lty=2); | 518 } |
245 lines(days, group2-group2_std_error, col=2, lty=2); | 519 } |
246 # Standard error for group3. | 520 } |
247 lines(days, group3+group3_std_error, col=4, lty=2); | 521 |
248 lines(days, group3-group3_std_error, col=4, lty=2); | 522 # Determine if we're plotting generations separately. |
249 } | 523 if (opt$plot_generations_separately=="yes") { |
250 } | 524 plot_generations_separately = TRUE; |
251 | 525 } else { |
252 temperature_data_frame = parse_input_data(opt$input, opt$num_days); | 526 plot_generations_separately = FALSE; |
253 # All latitude values are the same, so get the value from the first row. | 527 } |
528 # Display the total number of days in the Galaxy history item blurb. | |
529 cat("Year-to-date number of days: ", opt$num_days_ytd, "\n"); | |
530 | |
531 # Parse the inputs. | |
532 data_list = parse_input_data(opt$input_ytd, opt$input_norm, opt$num_days_ytd, opt$location); | |
533 temperature_data_frame = data_list[[1]]; | |
534 # Information needed for plots. | |
535 start_date = data_list[[2]]; | |
536 end_date = data_list[[3]]; | |
537 start_doy_ytd = data_list[[4]]; | |
538 end_doy_ytd = data_list[[5]]; | |
539 is_leap_year = data_list[[6]]; | |
540 total_days = data_list[[7]]; | |
541 total_days_vector = c(1:total_days); | |
542 location = data_list[[8]]; | |
543 | |
544 # Create copies of the temperature data for generations P, F1 and F2 if we're plotting generations separately. | |
545 if (plot_generations_separately) { | |
546 temperature_data_frame_P = data.frame(temperature_data_frame); | |
547 temperature_data_frame_F1 = data.frame(temperature_data_frame); | |
548 temperature_data_frame_F2 = data.frame(temperature_data_frame); | |
549 } | |
550 | |
551 # Get the ticks date labels for plots. | |
552 ticks_and_labels = get_x_axis_ticks_and_labels(temperature_data_frame, total_days, start_doy_ytd, end_doy_ytd); | |
553 ticks = c(unlist(ticks_and_labels[1])); | |
554 date_labels = c(unlist(ticks_and_labels[2])); | |
555 # All latitude values are the same, so get the value for plots from the first row. | |
254 latitude = temperature_data_frame$LATITUDE[1]; | 556 latitude = temperature_data_frame$LATITUDE[1]; |
255 num_columns = dim(temperature_data_frame)[2]; | 557 |
256 date_labels = get_date_labels(temperature_data_frame, opt$num_days); | 558 # Determine the specified life stages for processing. |
257 | 559 # Split life_stages into a list of strings for plots. |
560 life_stages_str = as.character(opt$life_stages); | |
561 life_stages = strsplit(life_stages_str, ",")[[1]]; | |
562 | |
563 # Determine the data we need to generate for plotting. | |
564 process_eggs = FALSE; | |
565 process_nymphs = FALSE; | |
566 process_young_nymphs = FALSE; | |
567 process_old_nymphs = FALSE; | |
568 process_total_nymphs = FALSE; | |
569 process_adults = FALSE; | |
570 process_previttelogenic_adults = FALSE; | |
571 process_vittelogenic_adults = FALSE; | |
572 process_diapausing_adults = FALSE; | |
573 process_total_adults = FALSE; | |
574 for (life_stage in life_stages) { | |
575 if (life_stage=="Total") { | |
576 process_eggs = TRUE; | |
577 process_nymphs = TRUE; | |
578 process_adults = TRUE; | |
579 } else if (life_stage=="Egg") { | |
580 process_eggs = TRUE; | |
581 } else if (life_stage=="Nymph") { | |
582 process_nymphs = TRUE; | |
583 } else if (life_stage=="Adult") { | |
584 process_adults = TRUE; | |
585 } | |
586 } | |
587 if (process_nymphs) { | |
588 # Split life_stages_nymph into a list of strings for plots. | |
589 life_stages_nymph_str = as.character(opt$life_stages_nymph); | |
590 life_stages_nymph = strsplit(life_stages_nymph_str, ",")[[1]]; | |
591 for (life_stage_nymph in life_stages_nymph) { | |
592 if (life_stage_nymph=="Young") { | |
593 process_young_nymphs = TRUE; | |
594 } else if (life_stage_nymph=="Old") { | |
595 process_old_nymphs = TRUE; | |
596 } else if (life_stage_nymph=="Total") { | |
597 process_total_nymphs = TRUE; | |
598 } | |
599 } | |
600 } | |
601 if (process_adults) { | |
602 # Split life_stages_adult into a list of strings for plots. | |
603 life_stages_adult_str = as.character(opt$life_stages_adult); | |
604 life_stages_adult = strsplit(life_stages_adult_str, ",")[[1]]; | |
605 for (life_stage_adult in life_stages_adult) { | |
606 if (life_stage_adult=="Pre-vittelogenic") { | |
607 process_previttelogenic_adults = TRUE; | |
608 } else if (life_stage_adult=="Vittelogenic") { | |
609 process_vittelogenic_adults = TRUE; | |
610 } else if (life_stage_adult=="Diapausing") { | |
611 process_diapausing_adults = TRUE; | |
612 } else if (life_stage_adult=="Total") { | |
613 process_total_adults = TRUE; | |
614 } | |
615 } | |
616 } | |
258 # Initialize matrices. | 617 # Initialize matrices. |
259 Eggs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 618 if (process_eggs) { |
260 YoungNymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 619 Eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); |
261 OldNymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 620 } |
262 Previtellogenic.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 621 if (process_young_nymphs | process_total_nymphs) { |
263 Vitellogenic.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 622 YoungNymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); |
264 Diapausing.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 623 } |
265 | 624 if (process_old_nymphs | process_total_nymphs) { |
266 newborn.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 625 OldNymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); |
267 adult.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 626 } |
268 death.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 627 if (process_previttelogenic_adults | process_total_adults) { |
269 | 628 Previttelogenic.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); |
270 P.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 629 } |
271 P_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 630 if (process_vittelogenic_adults | process_total_adults) { |
272 F1.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 631 Vittelogenic.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); |
273 F1_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 632 } |
274 F2.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 633 if (process_diapausing_adults | process_total_adults) { |
275 F2_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 634 Diapausing.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); |
276 | 635 } |
277 population.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications); | 636 newborn.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); |
637 adult.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
638 death.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
639 if (plot_generations_separately) { | |
640 # P is Parental, or overwintered adults. | |
641 P.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
642 # F1 is the first field-produced generation. | |
643 F1.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
644 # F2 is the second field-produced generation. | |
645 F2.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
646 if (process_eggs) { | |
647 P_eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
648 F1_eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
649 F2_eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
650 } | |
651 if (process_young_nymphs) { | |
652 P_young_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
653 F1_young_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
654 F2_young_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
655 } | |
656 if (process_old_nymphs) { | |
657 P_old_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
658 F1_old_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
659 F2_old_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
660 } | |
661 if (process_total_nymphs) { | |
662 P_total_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
663 F1_total_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
664 F2_total_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
665 } | |
666 if (process_previttelogenic_adults) { | |
667 P_previttelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
668 F1_previttelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
669 F2_previttelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
670 } | |
671 if (process_vittelogenic_adults) { | |
672 P_vittelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
673 F1_vittelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
674 F2_vittelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
675 } | |
676 if (process_diapausing_adults) { | |
677 P_diapausing_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
678 F1_diapausing_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
679 F2_diapausing_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
680 } | |
681 if (process_total_adults) { | |
682 P_total_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
683 F1_total_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
684 F2_total_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
685 } | |
686 } | |
687 # Total population. | |
688 population.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); | |
278 | 689 |
279 # Process replications. | 690 # Process replications. |
280 for (N.replications in 1:opt$replications) { | 691 for (current_replication in 1:opt$replications) { |
281 # Start with the user-defined number of insects per replication. | 692 # Start with the user-defined number of insects per replication. |
282 num_insects = opt$insects_per_replication; | 693 num_insects = opt$insects_per_replication; |
283 # Generation, Stage, degree-days, T, Diapause. | 694 # Generation, Stage, degree-days, T, Diapause. |
284 vector.ini = c(0, 3, 0, 0, 0); | 695 vector.ini = c(0, 3, 0, 0, 0); |
285 # Overwintering, previttelogenic, degree-days=0, T=0, no-diapause. | 696 # Replicate to create a matrix where the columns are |
697 # Generation, Stage, degree-days, T, Diapause and the | |
698 # rows are the initial number of insects per replication. | |
286 vector.matrix = rep(vector.ini, num_insects); | 699 vector.matrix = rep(vector.ini, num_insects); |
287 # Complete matrix for the population. | 700 # Complete transposed matrix for the population, so now |
701 # the rows are Generation, Stage, degree-days, T, Diapause | |
288 vector.matrix = base::t(matrix(vector.matrix, nrow=5)); | 702 vector.matrix = base::t(matrix(vector.matrix, nrow=5)); |
289 # Time series of population size. | 703 # Time series of population size. |
290 Eggs = rep(0, opt$num_days); | 704 if (process_eggs) { |
291 YoungNymphs = rep(0, opt$num_days); | 705 Eggs = rep(0, total_days); |
292 OldNymphs = rep(0, opt$num_days); | 706 } |
293 Previtellogenic = rep(0, opt$num_days); | 707 if (process_young_nymphs | process_total_nymphs) { |
294 Vitellogenic = rep(0, opt$num_days); | 708 YoungNymphs = rep(0, total_days); |
295 Diapausing = rep(0, opt$num_days); | 709 } |
296 | 710 if (process_old_nymphs | process_total_nymphs) { |
297 N.newborn = rep(0, opt$num_days); | 711 OldNymphs = rep(0, total_days); |
298 N.adult = rep(0, opt$num_days); | 712 } |
299 N.death = rep(0, opt$num_days); | 713 if (process_previttelogenic_adults | process_total_adults) { |
300 | 714 Previttelogenic = rep(0, total_days); |
301 overwintering_adult.population = rep(0, opt$num_days); | 715 } |
302 first_generation.population = rep(0, opt$num_days); | 716 if (process_vittelogenic_adults | process_total_adults) { |
303 second_generation.population = rep(0, opt$num_days); | 717 Vittelogenic = rep(0, total_days); |
304 | 718 } |
305 P.adult = rep(0, opt$num_days); | 719 if (process_diapausing_adults | process_total_adults) { |
306 F1.adult = rep(0, opt$num_days); | 720 Diapausing = rep(0, total_days); |
307 F2.adult = rep(0, opt$num_days); | 721 } |
308 | 722 N.newborn = rep(0, total_days); |
723 N.adult = rep(0, total_days); | |
724 N.death = rep(0, total_days); | |
725 overwintering_adult.population = rep(0, total_days); | |
726 first_generation.population = rep(0, total_days); | |
727 second_generation.population = rep(0, total_days); | |
728 if (plot_generations_separately) { | |
729 # P is Parental, or overwintered adults. | |
730 # F1 is the first field-produced generation. | |
731 # F2 is the second field-produced generation. | |
732 if (process_eggs) { | |
733 P.egg = rep(0, total_days); | |
734 F1.egg = rep(0, total_days); | |
735 F2.egg = rep(0, total_days); | |
736 } | |
737 if (process_young_nymphs) { | |
738 P.young_nymph = rep(0, total_days); | |
739 F1.young_nymph = rep(0, total_days); | |
740 F2.young_nymph = rep(0, total_days); | |
741 } | |
742 if (process_old_nymphs) { | |
743 P.old_nymph = rep(0, total_days); | |
744 F1.old_nymph = rep(0, total_days); | |
745 F2.old_nymph = rep(0, total_days); | |
746 } | |
747 if (process_total_nymphs) { | |
748 P.total_nymph = rep(0, total_days); | |
749 F1.total_nymph = rep(0, total_days); | |
750 F2.total_nymph = rep(0, total_days); | |
751 } | |
752 if (process_previttelogenic_adults) { | |
753 P.previttelogenic_adult = rep(0, total_days); | |
754 F1.previttelogenic_adult = rep(0, total_days); | |
755 F2.previttelogenic_adult = rep(0, total_days); | |
756 } | |
757 if (process_vittelogenic_adults) { | |
758 P.vittelogenic_adult = rep(0, total_days); | |
759 F1.vittelogenic_adult = rep(0, total_days); | |
760 F2.vittelogenic_adult = rep(0, total_days); | |
761 } | |
762 if (process_diapausing_adults) { | |
763 P.diapausing_adult = rep(0, total_days); | |
764 F1.diapausing_adult = rep(0, total_days); | |
765 F2.diapausing_adult = rep(0, total_days); | |
766 } | |
767 if (process_total_adults) { | |
768 P.total_adult = rep(0, total_days); | |
769 F1.total_adult = rep(0, total_days); | |
770 F2.total_adult = rep(0, total_days); | |
771 } | |
772 } | |
309 total.population = NULL; | 773 total.population = NULL; |
310 | 774 averages.day = rep(0, total_days); |
311 averages.day = rep(0, opt$num_days); | 775 # All the days included in the input_ytd temperature dataset. |
312 # All the days included in the input temperature dataset. | 776 for (row in 1:total_days) { |
313 for (row in 1:opt$num_days) { | |
314 # Get the integer day of the year for the current row. | 777 # Get the integer day of the year for the current row. |
315 doy = temperature_data_frame$DOY[row]; | 778 doy = temperature_data_frame$DOY[row]; |
316 # Photoperiod in the day. | 779 # Photoperiod in the day. |
317 photoperiod = temperature_data_frame$DAYLEN[row]; | 780 photoperiod = temperature_data_frame$DAYLEN[row]; |
318 temp.profile = get_temperature_at_hour(latitude, temperature_data_frame, row, opt$num_days); | 781 temp.profile = get_temperature_at_hour(latitude, temperature_data_frame, row, total_days); |
319 mean.temp = temp.profile[1]; | 782 mean.temp = temp.profile[1]; |
320 averages.temp = temp.profile[2]; | 783 averages.temp = temp.profile[2]; |
321 averages.day[row] = averages.temp; | 784 averages.day[row] = averages.temp; |
322 # Trash bin for death. | 785 # Trash bin for death. |
323 death.vector = NULL; | 786 death.vector = NULL; |
339 if (vector.individual[2] == 0) { | 802 if (vector.individual[2] == 0) { |
340 # Egg. | 803 # Egg. |
341 death.probability = opt$egg_mortality * mortality.egg(mean.temp); | 804 death.probability = opt$egg_mortality * mortality.egg(mean.temp); |
342 } | 805 } |
343 else if (vector.individual[2] == 1 | vector.individual[2] == 2) { | 806 else if (vector.individual[2] == 1 | vector.individual[2] == 2) { |
807 # Nymph. | |
344 death.probability = opt$nymph_mortality * mortality.nymph(mean.temp); | 808 death.probability = opt$nymph_mortality * mortality.nymph(mean.temp); |
345 } | 809 } |
346 else if (vector.individual[2] == 3 | vector.individual[2] == 4 | vector.individual[2] == 5) { | 810 else if (vector.individual[2] == 3 | vector.individual[2] == 4 | vector.individual[2] == 5) { |
347 # Adult. | 811 # Adult. |
348 if (doy < day.kill) { | 812 if (doy < day.kill) { |
359 death.vector = c(death.vector, i); | 823 death.vector = c(death.vector, i); |
360 } | 824 } |
361 else { | 825 else { |
362 # End of diapause. | 826 # End of diapause. |
363 if (vector.individual[1] == 0 && vector.individual[2] == 3) { | 827 if (vector.individual[1] == 0 && vector.individual[2] == 3) { |
364 # Overwintering adult (previttelogenic). | 828 # Overwintering adult (pre-vittelogenic). |
365 if (photoperiod > opt$photoperiod && vector.individual[3] > 68 && doy < 180) { | 829 if (photoperiod > opt$photoperiod && vector.individual[3] > 68 && doy < 180) { |
366 # Add 68C to become fully reproductively matured. | 830 # Add 68C to become fully reproductively matured. |
367 # Transfer to vittelogenic. | 831 # Transfer to vittelogenic. |
368 vector.individual = c(0, 4, 0, 0, 0); | 832 vector.individual = c(0, 4, 0, 0, 0); |
369 vector.matrix[i,] = vector.individual; | 833 vector.matrix[i,] = vector.individual; |
370 } | 834 } |
371 else { | 835 else { |
372 # Add to # Add average temperature for current day. | 836 # Add average temperature for current day. |
373 vector.individual[3] = vector.individual[3] + averages.temp; | 837 vector.individual[3] = vector.individual[3] + averages.temp; |
374 # Add 1 day in current stage. | 838 # Add 1 day in current stage. |
375 vector.individual[4] = vector.individual[4] + 1; | 839 vector.individual[4] = vector.individual[4] + 1; |
376 vector.matrix[i,] = vector.individual; | 840 vector.matrix[i,] = vector.individual; |
377 } | 841 } |
378 } | 842 } |
379 if (vector.individual[1] != 0 && vector.individual[2] == 3) { | 843 if (vector.individual[1] != 0 && vector.individual[2] == 3) { |
380 # Not overwintering adult (previttelogenic). | 844 # Not overwintering adult (pre-vittelogenic). |
381 current.gen = vector.individual[1]; | 845 current.gen = vector.individual[1]; |
382 if (vector.individual[3] > 68) { | 846 if (vector.individual[3] > 68) { |
383 # Add 68C to become fully reproductively matured. | 847 # Add 68C to become fully reproductively matured. |
384 # Transfer to vittelogenic. | 848 # Transfer to vittelogenic. |
385 vector.individual = c(current.gen, 4, 0, 0, 0); | 849 vector.individual = c(current.gen, 4, 0, 0, 0); |
490 # Add 1 day in current stage. | 954 # Add 1 day in current stage. |
491 vector.individual[4] = vector.individual[4] + 1; | 955 vector.individual[4] = vector.individual[4] + 1; |
492 } | 956 } |
493 vector.matrix[i,] = vector.individual; | 957 vector.matrix[i,] = vector.individual; |
494 } | 958 } |
495 # Old nymph to adult: previttelogenic or diapausing? | 959 # Old nymph to adult: pre-vittelogenic or diapausing? |
496 if (vector.individual[2] == 2) { | 960 if (vector.individual[2] == 2) { |
497 # Add average temperature for current day. | 961 # Add average temperature for current day. |
498 vector.individual[3] = vector.individual[3] + averages.temp; | 962 vector.individual[3] = vector.individual[3] + averages.temp; |
499 if (vector.individual[3] >= (200+opt$adult_accumulation)) { | 963 if (vector.individual[3] >= (200+opt$adult_accumulation)) { |
500 # From old to adult, degree_days requirement met. | 964 # From old to adult, degree_days requirement met. |
533 num_insects.newborn = length(birth.vector[,1]); | 997 num_insects.newborn = length(birth.vector[,1]); |
534 vector.matrix = rbind(vector.matrix, birth.vector); | 998 vector.matrix = rbind(vector.matrix, birth.vector); |
535 # Update population size for the next day. | 999 # Update population size for the next day. |
536 num_insects = num_insects - num_insects.death + num_insects.newborn; | 1000 num_insects = num_insects - num_insects.death + num_insects.newborn; |
537 | 1001 |
538 # Aggregate results by day. | 1002 # Aggregate results by day. Due to multiple transpose calls |
539 # Egg population size. | 1003 # on vector.matrix above, the columns of vector.matrix |
540 Eggs[row] = sum(vector.matrix[,2]==0); | 1004 # are now Generation, Stage, degree-days, T, Diapause, |
541 # Young nymph population size. | 1005 if (process_eggs) { |
542 YoungNymphs[row] = sum(vector.matrix[,2]==1); | 1006 # For egg population size, column 2 (Stage), must be 0. |
543 # Old nymph population size. | 1007 Eggs[row] = sum(vector.matrix[,2]==0); |
544 OldNymphs[row] = sum(vector.matrix[,2]==2); | 1008 } |
545 # Previtellogenic population size. | 1009 if (process_young_nymphs | process_total_nymphs) { |
546 Previtellogenic[row] = sum(vector.matrix[,2]==3); | 1010 # For young nymph population size, column 2 (Stage) must be 1. |
547 # Vitellogenic population size. | 1011 YoungNymphs[row] = sum(vector.matrix[,2]==1); |
548 Vitellogenic[row] = sum(vector.matrix[,2]==4); | 1012 } |
549 # Diapausing population size. | 1013 if (process_old_nymphs | process_total_nymphs) { |
550 Diapausing[row] = sum(vector.matrix[,2]==5); | 1014 # For old nymph population size, column 2 (Stage) must be 2. |
1015 OldNymphs[row] = sum(vector.matrix[,2]==2); | |
1016 } | |
1017 if (process_previttelogenic_adults | process_total_adults) { | |
1018 # For pre-vittelogenic population size, column 2 (Stage) must be 3. | |
1019 Previttelogenic[row] = sum(vector.matrix[,2]==3); | |
1020 } | |
1021 if (process_vittelogenic_adults | process_total_adults) { | |
1022 # For vittelogenic population size, column 2 (Stage) must be 4. | |
1023 Vittelogenic[row] = sum(vector.matrix[,2]==4); | |
1024 } | |
1025 if (process_diapausing_adults | process_total_adults) { | |
1026 # For diapausing population size, column 2 (Stage) must be 5. | |
1027 Diapausing[row] = sum(vector.matrix[,2]==5); | |
1028 } | |
551 | 1029 |
552 # Newborn population size. | 1030 # Newborn population size. |
553 N.newborn[row] = num_insects.newborn; | 1031 N.newborn[row] = num_insects.newborn; |
554 # Adult population size. | 1032 # Adult population size. |
555 N.adult[row] = sum(vector.matrix[,2]==3) + sum(vector.matrix[,2]==4) + sum(vector.matrix[,2]==5); | 1033 N.adult[row] = sum(vector.matrix[,2]==3) + sum(vector.matrix[,2]==4) + sum(vector.matrix[,2]==5); |
556 # Dead population size. | 1034 # Dead population size. |
557 N.death[row] = num_insects.death; | 1035 N.death[row] = num_insects.death; |
558 | 1036 |
559 total.population = c(total.population, num_insects); | 1037 total.population = c(total.population, num_insects); |
560 | 1038 |
561 # Overwintering adult population size. | 1039 # For overwintering adult (P) population |
1040 # size, column 1 (Generation) must be 0. | |
562 overwintering_adult.population[row] = sum(vector.matrix[,1]==0); | 1041 overwintering_adult.population[row] = sum(vector.matrix[,1]==0); |
563 # First generation population size. | 1042 # For first field generation (F1) population |
1043 # size, column 1 (Generation) must be 1. | |
564 first_generation.population[row] = sum(vector.matrix[,1]==1); | 1044 first_generation.population[row] = sum(vector.matrix[,1]==1); |
565 # Second generation population size. | 1045 # For second field generation (F2) population |
1046 # size, column 1 (Generation) must be 2. | |
566 second_generation.population[row] = sum(vector.matrix[,1]==2); | 1047 second_generation.population[row] = sum(vector.matrix[,1]==2); |
567 | 1048 |
568 # P adult population size. | 1049 if (plot_generations_separately) { |
569 P.adult[row] = sum(vector.matrix[,1]==0); | 1050 if (process_eggs) { |
570 # F1 adult population size. | 1051 # For egg life stage of generation P population size, |
571 F1.adult[row] = sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5)); | 1052 # column 1 (generation) is 0 and column 2 (Stage) is 0. |
572 # F2 adult population size | 1053 P.egg[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==0); |
573 F2.adult[row] = sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5)); | 1054 # For egg life stage of generation F1 population size, |
574 } # End of days specified in the input temperature data. | 1055 # column 1 (generation) is 1 and column 2 (Stage) is 0. |
1056 F1.egg[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==0); | |
1057 # For egg life stage of generation F2 population size, | |
1058 # column 1 (generation) is 2 and column 2 (Stage) is 0. | |
1059 F2.egg[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==0); | |
1060 } | |
1061 if (process_young_nymphs) { | |
1062 # For young nymph life stage of generation P population | |
1063 # size, the following combination is required: | |
1064 # - column 1 (Generation) is 0 and column 2 (Stage) is 1 (Young nymph) | |
1065 P.young_nymph[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==1); | |
1066 # For young nymph life stage of generation F1 population | |
1067 # size, the following combination is required: | |
1068 # - column 1 (Generation) is 1 and column 2 (Stage) is 1 (Young nymph) | |
1069 F1.young_nymph[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==1); | |
1070 # For young nymph life stage of generation F2 population | |
1071 # size, the following combination is required: | |
1072 # - column 1 (Generation) is 2 and column 2 (Stage) is 1 (Young nymph) | |
1073 F2.young_nymph[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==1); | |
1074 } | |
1075 if (process_old_nymphs) { | |
1076 # For old nymph life stage of generation P population | |
1077 # size, the following combination is required: | |
1078 # - column 1 (Generation) is 0 and column 2 (Stage) is 2 (Old nymph) | |
1079 P.old_nymph[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==2); | |
1080 # For old nymph life stage of generation F1 population | |
1081 # size, the following combination is required: | |
1082 # - column 1 (Generation) is 1 and column 2 (Stage) is 2 (Old nymph) | |
1083 F1.old_nymph[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==2); | |
1084 # For old nymph life stage of generation F2 population | |
1085 # size, the following combination is required: | |
1086 # - column 1 (Generation) is 2 and column 2 (Stage) is 2 (Old nymph) | |
1087 F2.old_nymph[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==2); | |
1088 } | |
1089 if (process_total_nymphs) { | |
1090 # For total nymph life stage of generation P population | |
1091 # size, one of the following combinations is required: | |
1092 # - column 1 (Generation) is 0 and column 2 (Stage) is 1 (Young nymph) | |
1093 # - column 1 (Generation) is 0 and column 2 (Stage) is 2 (Old nymph) | |
1094 P.total_nymph[row] = sum((vector.matrix[,1]==0 & vector.matrix[,2]==1) | (vector.matrix[,1]==0 & vector.matrix[,2]==2)); | |
1095 # For total nymph life stage of generation F1 population | |
1096 # size, one of the following combinations is required: | |
1097 # - column 1 (Generation) is 1 and column 2 (Stage) is 1 (Young nymph) | |
1098 # - column 1 (Generation) is 1 and column 2 (Stage) is 2 (Old nymph) | |
1099 F1.total_nymph[row] = sum((vector.matrix[,1]==1 & vector.matrix[,2]==1) | (vector.matrix[,1]==1 & vector.matrix[,2]==2)); | |
1100 # For total nymph life stage of generation F2 population | |
1101 # size, one of the following combinations is required: | |
1102 # - column 1 (Generation) is 2 and column 2 (Stage) is 1 (Young nymph) | |
1103 # - column 1 (Generation) is 2 and column 2 (Stage) is 2 (Old nymph) | |
1104 F2.total_nymph[row] = sum((vector.matrix[,1]==2 & vector.matrix[,2]==1) | (vector.matrix[,1]==2 & vector.matrix[,2]==2)); | |
1105 } | |
1106 if (process_previttelogenic_adults) { | |
1107 # For previttelogenic adult life stage of generation P population | |
1108 # size, the following combination is required: | |
1109 # - column 1 (Generation) is 0 and column 2 (Stage) is 3 (Pre-vittelogenic) | |
1110 P.previttelogenic_adult[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==3); | |
1111 # For previttelogenic adult life stage of generation F1 population | |
1112 # size, the following combination is required: | |
1113 # - column 1 (Generation) is 1 and column 2 (Stage) is 3 (Pre-vittelogenic) | |
1114 F1.previttelogenic_adult[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==3); | |
1115 # For previttelogenic adult life stage of generation F2 population | |
1116 # size, the following combination is required: | |
1117 # - column 1 (Generation) is 2 and column 2 (Stage) is 3 (Pre-vittelogenic) | |
1118 F2.previttelogenic_adult[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==3); | |
1119 } | |
1120 if (process_vittelogenic_adults) { | |
1121 # For vittelogenic adult life stage of generation P population | |
1122 # size, the following combination is required: | |
1123 # - column 1 (Generation) is 0 and column 2 (Stage) is 4 (Vittelogenic) | |
1124 P.vittelogenic_adult[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==4); | |
1125 # For vittelogenic adult life stage of generation F1 population | |
1126 # size, the following combination is required: | |
1127 # - column 1 (Generation) is 1 and column 2 (Stage) is 4 (Vittelogenic) | |
1128 F1.vittelogenic_adult[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==4); | |
1129 # For vittelogenic adult life stage of generation F2 population | |
1130 # size, the following combination is required: | |
1131 # - column 1 (Generation) is 2 and column 2 (Stage) is 4 (Vittelogenic) | |
1132 F2.vittelogenic_adult[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==4); | |
1133 } | |
1134 if (process_diapausing_adults) { | |
1135 # For diapausing adult life stage of generation P population | |
1136 # size, the following combination is required: | |
1137 # - column 1 (Generation) is 0 and column 2 (Stage) is 5 (Diapausing) | |
1138 P.diapausing_adult[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==5); | |
1139 # For diapausing adult life stage of generation F1 population | |
1140 # size, the following combination is required: | |
1141 # - column 1 (Generation) is 1 and column 2 (Stage) is 5 (Diapausing) | |
1142 F1.diapausing_adult[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==5); | |
1143 # For diapausing adult life stage of generation F2 population | |
1144 # size, the following combination is required: | |
1145 # - column 1 (Generation) is 2 and column 2 (Stage) is 5 (Diapausing) | |
1146 F2.diapausing_adult[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==5); | |
1147 } | |
1148 if (process_total_adults) { | |
1149 # For total adult life stage of generation P population | |
1150 # size, one of the following combinations is required: | |
1151 # - column 1 (Generation) is 0 and column 2 (Stage) is 3 (Pre-vittelogenic) | |
1152 # - column 1 (Generation) is 0 and column 2 (Stage) is 4 (Vittelogenic) | |
1153 # - column 1 (Generation) is 0 and column 2 (Stage) is 5 (Diapausing) | |
1154 P.total_adult[row] = sum((vector.matrix[,1]==0 & vector.matrix[,2]==3) | (vector.matrix[,1]==0 & vector.matrix[,2]==4) | (vector.matrix[,1]==0 & vector.matrix[,2]==5)); | |
1155 # For total adult life stage of generation F1 population | |
1156 # size, one of the following combinations is required: | |
1157 # - column 1 (Generation) is 1 and column 2 (Stage) is 3 (Pre-vittelogenic) | |
1158 # - column 1 (Generation) is 1 and column 2 (Stage) is 4 (Vittelogenic) | |
1159 # - column 1 (Generation) is 1 and column 2 (Stage) is 5 (Diapausing) | |
1160 F1.total_adult[row] = sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5)); | |
1161 # For total adult life stage of generation F2 population | |
1162 # size, one of the following combinations is required: | |
1163 # - column 1 (Generation) is 2 and column 2 (Stage) is 3 (Pre-vittelogenic) | |
1164 # - column 1 (Generation) is 2 and column 2 (Stage) is 4 (Vittelogenic) | |
1165 # - column 1 (Generation) is 2 and column 2 (Stage) is 5 (Diapausing) | |
1166 F2.total_adult[row] = sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5)); | |
1167 } | |
1168 } | |
1169 } # End of days specified in the input_ytd temperature data. | |
575 | 1170 |
576 averages.cum = cumsum(averages.day); | 1171 averages.cum = cumsum(averages.day); |
577 | 1172 |
578 # Define the output values. | 1173 # Define the output values. |
579 Eggs.replications[,N.replications] = Eggs; | 1174 if (process_eggs) { |
580 YoungNymphs.replications[,N.replications] = YoungNymphs; | 1175 Eggs.replications[,current_replication] = Eggs; |
581 OldNymphs.replications[,N.replications] = OldNymphs; | 1176 } |
582 Previtellogenic.replications[,N.replications] = Previtellogenic; | 1177 if (process_young_nymphs | process_total_nymphs) { |
583 Vitellogenic.replications[,N.replications] = Vitellogenic; | 1178 YoungNymphs.replications[,current_replication] = YoungNymphs; |
584 Diapausing.replications[,N.replications] = Diapausing; | 1179 } |
585 | 1180 if (process_old_nymphs | process_total_nymphs) { |
586 newborn.replications[,N.replications] = N.newborn; | 1181 OldNymphs.replications[,current_replication] = OldNymphs; |
587 adult.replications[,N.replications] = N.adult; | 1182 } |
588 death.replications[,N.replications] = N.death; | 1183 if (process_previttelogenic_adults | process_total_adults) { |
589 | 1184 Previttelogenic.replications[,current_replication] = Previttelogenic; |
590 P.replications[,N.replications] = overwintering_adult.population; | 1185 } |
591 P_adults.replications[,N.replications] = P.adult; | 1186 if (process_vittelogenic_adults | process_total_adults) { |
592 F1.replications[,N.replications] = first_generation.population; | 1187 Vittelogenic.replications[,current_replication] = Vittelogenic; |
593 F1_adults.replications[,N.replications] = F1.adult; | 1188 } |
594 F2.replications[,N.replications] = second_generation.population; | 1189 if (process_diapausing_adults | process_total_adults) { |
595 F2_adults.replications[,N.replications] = F2.adult; | 1190 Diapausing.replications[,current_replication] = Diapausing; |
596 | 1191 } |
597 population.replications[,N.replications] = total.population; | 1192 newborn.replications[,current_replication] = N.newborn; |
598 } | 1193 adult.replications[,current_replication] = N.adult; |
599 | 1194 death.replications[,current_replication] = N.death; |
600 # Mean value for eggs. | 1195 if (plot_generations_separately) { |
601 eggs = apply(Eggs.replications, 1, mean); | 1196 # P is Parental, or overwintered adults. |
602 # Standard error for eggs. | 1197 P.replications[,current_replication] = overwintering_adult.population; |
603 eggs.std_error = apply(Eggs.replications, 1, sd) / sqrt(opt$replications); | 1198 # F1 is the first field-produced generation. |
604 | 1199 F1.replications[,current_replication] = first_generation.population; |
605 # Mean value for nymphs. | 1200 # F2 is the second field-produced generation. |
606 nymphs = apply((YoungNymphs.replications+OldNymphs.replications), 1, mean); | 1201 F2.replications[,current_replication] = second_generation.population; |
607 # Standard error for nymphs. | 1202 if (process_eggs) { |
608 nymphs.std_error = apply((YoungNymphs.replications+OldNymphs.replications) / sqrt(opt$replications), 1, sd); | 1203 P_eggs.replications[,current_replication] = P.egg; |
609 | 1204 F1_eggs.replications[,current_replication] = F1.egg; |
610 # Mean value for adults. | 1205 F2_eggs.replications[,current_replication] = F2.egg; |
611 adults = apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, mean); | 1206 } |
612 # Standard error for adults. | 1207 if (process_young_nymphs) { |
613 adults.std_error = apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, sd) / sqrt(opt$replications); | 1208 P_young_nymphs.replications[,current_replication] = P.young_nymph; |
614 | 1209 F1_young_nymphs.replications[,current_replication] = F1.young_nymph; |
615 # Mean value for P. | 1210 F2_young_nymphs.replications[,current_replication] = F2.young_nymph; |
616 P = apply(P.replications, 1, mean); | 1211 } |
617 # Standard error for P. | 1212 if (process_old_nymphs) { |
618 P.std_error = apply(P.replications, 1, sd) / sqrt(opt$replications); | 1213 P_old_nymphs.replications[,current_replication] = P.old_nymph; |
619 | 1214 F1_old_nymphs.replications[,current_replication] = F1.old_nymph; |
620 # Mean value for P adults. | 1215 F2_old_nymphs.replications[,current_replication] = F2.old_nymph; |
621 P_adults = apply(P_adults.replications, 1, mean); | 1216 } |
622 # Standard error for P_adult. | 1217 if (process_total_nymphs) { |
623 P_adults.std_error = apply(P_adults.replications, 1, sd) / sqrt(opt$replications); | 1218 P_total_nymphs.replications[,current_replication] = P.total_nymph; |
624 | 1219 F1_total_nymphs.replications[,current_replication] = F1.total_nymph; |
625 # Mean value for F1. | 1220 F2_total_nymphs.replications[,current_replication] = F2.total_nymph; |
626 F1 = apply(F1.replications, 1, mean); | 1221 } |
627 # Standard error for F1. | 1222 if (process_previttelogenic_adults) { |
628 F1.std_error = apply(F1.replications, 1, sd) / sqrt(opt$replications); | 1223 P_previttelogenic_adults.replications[,current_replication] = P.previttelogenic_adult; |
629 | 1224 F1_previttelogenic_adults.replications[,current_replication] = F1.previttelogenic_adult; |
630 # Mean value for F1 adults. | 1225 F2_previttelogenic_adults.replications[,current_replication] = F2.previttelogenic_adult; |
631 F1_adults = apply(F1_adults.replications, 1, mean); | 1226 } |
632 # Standard error for F1 adult. | 1227 if (process_vittelogenic_adults) { |
633 F1_adults.std_error = apply(F1_adults.replications, 1, sd) / sqrt(opt$replications); | 1228 P_vittelogenic_adults.replications[,current_replication] = P.vittelogenic_adult; |
634 | 1229 F1_vittelogenic_adults.replications[,current_replication] = F1.vittelogenic_adult; |
635 # Mean value for F2. | 1230 F2_vittelogenic_adults.replications[,current_replication] = F2.vittelogenic_adult; |
636 F2 = apply(F2.replications, 1, mean); | 1231 } |
637 # Standard error for F2. | 1232 if (process_diapausing_adults) { |
638 F2.std_error = apply(F2.replications, 1, sd) / sqrt(opt$replications); | 1233 P_diapausing_adults.replications[,current_replication] = P.diapausing_adult; |
639 | 1234 F1_diapausing_adults.replications[,current_replication] = F1.diapausing_adult; |
640 # Mean value for F2 adults. | 1235 F2_diapausing_adults.replications[,current_replication] = F2.diapausing_adult; |
641 F2_adults = apply(F2_adults.replications, 1, mean); | 1236 } |
642 # Standard error for F2 adult. | 1237 if (process_total_adults) { |
643 F2_adults.std_error = apply(F2_adults.replications, 1, sd) / sqrt(opt$replications); | 1238 P_total_adults.replications[,current_replication] = P.total_adult; |
644 | 1239 F1_total_adults.replications[,current_replication] = F1.total_adult; |
645 # Display the total number of days in the Galaxy history item blurb. | 1240 F2_total_adults.replications[,current_replication] = F2.total_adult; |
646 cat("Number of days: ", opt$num_days, "\n"); | 1241 } |
647 | 1242 } |
648 dev.new(width=20, height=30); | 1243 population.replications[,current_replication] = total.population; |
649 | 1244 # End processing replications. |
650 # Start PDF device driver to save charts to output. | 1245 } |
651 pdf(file=opt$output, width=20, height=30, bg="white"); | 1246 |
652 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); | 1247 if (process_eggs) { |
653 | 1248 # Mean value for eggs. |
654 # Data analysis and visualization plots only within a single calendar year. | 1249 eggs = apply(Eggs.replications, 1, mean); |
655 days = c(1:opt$num_days); | 1250 temperature_data_frame = append_vector(temperature_data_frame, eggs, "EGG"); |
656 start_date = temperature_data_frame$DATE[1]; | 1251 # Standard error for eggs. |
657 end_date = temperature_data_frame$DATE[opt$num_days]; | 1252 eggs.std_error = apply(Eggs.replications, 1, sd) / sqrt(opt$replications); |
658 | 1253 temperature_data_frame = append_vector(temperature_data_frame, eggs.std_error, "EGGSE"); |
659 # Subfigure 1: population size by life stage. | 1254 } |
660 maxval = max(eggs+eggs.std_error, nymphs+nymphs.std_error, adults+adults.std_error); | 1255 if (process_nymphs) { |
661 render_chart("pop_size_by_life_stage", opt$insect, opt$location, latitude, start_date, end_date, days, maxval, | 1256 # Calculate nymph populations for selected life stage. |
662 opt$std_error_plot, adults, nymphs, eggs, adults.std_error, nymphs.std_error, eggs.std_error, date_labels); | 1257 for (life_stage_nymph in life_stages_nymph) { |
663 # Subfigure 2: population size by generation. | 1258 if (life_stage_nymph=="Young") { |
664 maxval = max(F2); | 1259 # Mean value for young nymphs. |
665 render_chart("pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days, maxval, | 1260 young_nymphs = apply(YoungNymphs.replications, 1, mean); |
666 opt$std_error_plot, P, F1, F2, P.std_error, F1.std_error, F2.std_error, date_labels); | 1261 temperature_data_frame = append_vector(temperature_data_frame, young_nymphs, "YOUNGNYMPH"); |
667 # Subfigure 3: adult population size by generation. | 1262 # Standard error for young nymphs. |
668 maxval = max(F2_adults) + 100; | 1263 young_nymphs.std_error = apply(YoungNymphs.replications / sqrt(opt$replications), 1, sd); |
669 render_chart("adult_pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days, maxval, | 1264 temperature_data_frame = append_vector(temperature_data_frame, young_nymphs.std_error, "YOUNGNYMPHSE"); |
670 opt$std_error_plot, P_adults, F1_adults, F2_adults, P_adults.std_error, F1_adults.std_error, F2_adults.std_error, | 1265 } else if (life_stage_nymph=="Old") { |
671 date_labels); | 1266 # Mean value for old nymphs. |
672 | 1267 old_nymphs = apply(OldNymphs.replications, 1, mean); |
673 # Turn off device driver to flush output. | 1268 temperature_data_frame = append_vector(temperature_data_frame, old_nymphs, "OLDNYMPH"); |
674 dev.off(); | 1269 # Standard error for old nymphs. |
1270 old_nymphs.std_error = apply(OldNymphs.replications / sqrt(opt$replications), 1, sd); | |
1271 temperature_data_frame = append_vector(temperature_data_frame, old_nymphs.std_error, "OLDNYMPHSE"); | |
1272 } else if (life_stage_nymph=="Total") { | |
1273 # Mean value for all nymphs. | |
1274 total_nymphs = apply((YoungNymphs.replications+OldNymphs.replications), 1, mean); | |
1275 temperature_data_frame = append_vector(temperature_data_frame, total_nymphs, "TOTALNYMPH"); | |
1276 # Standard error for all nymphs. | |
1277 total_nymphs.std_error = apply((YoungNymphs.replications+OldNymphs.replications) / sqrt(opt$replications), 1, sd); | |
1278 temperature_data_frame = append_vector(temperature_data_frame, total_nymphs.std_error, "TOTALNYMPHSE"); | |
1279 } | |
1280 } | |
1281 } | |
1282 if (process_adults) { | |
1283 # Calculate adult populations for selected life stage. | |
1284 for (life_stage_adult in life_stages_adult) { | |
1285 if (life_stage_adult == "Pre-vittelogenic") { | |
1286 # Mean value for previttelogenic adults. | |
1287 previttelogenic_adults = apply(Previttelogenic.replications, 1, mean); | |
1288 temperature_data_frame = append_vector(temperature_data_frame, previttelogenic_adults, "PRE-VITADULT"); | |
1289 # Standard error for previttelogenic adults. | |
1290 previttelogenic_adults.std_error = apply(Previttelogenic.replications, 1, sd) / sqrt(opt$replications); | |
1291 temperature_data_frame = append_vector(temperature_data_frame, previttelogenic_adults.std_error, "PRE-VITADULTSE"); | |
1292 } else if (life_stage_adult == "Vittelogenic") { | |
1293 # Mean value for vittelogenic adults. | |
1294 vittelogenic_adults = apply(Vittelogenic.replications, 1, mean); | |
1295 temperature_data_frame = append_vector(temperature_data_frame, vittelogenic_adults, "VITADULT"); | |
1296 # Standard error for vittelogenic adults. | |
1297 vittelogenic_adults.std_error = apply(Vittelogenic.replications, 1, sd) / sqrt(opt$replications); | |
1298 temperature_data_frame = append_vector(temperature_data_frame, vittelogenic_adults.std_error, "VITADULTSE"); | |
1299 } else if (life_stage_adult == "Diapausing") { | |
1300 # Mean value for vittelogenic adults. | |
1301 diapausing_adults = apply(Diapausing.replications, 1, mean); | |
1302 temperature_data_frame = append_vector(temperature_data_frame, diapausing_adults, "DIAPAUSINGADULT"); | |
1303 # Standard error for vittelogenic adults. | |
1304 diapausing_adults.std_error = apply(Diapausing.replications, 1, sd) / sqrt(opt$replications); | |
1305 temperature_data_frame = append_vector(temperature_data_frame, diapausing_adults.std_error, "DIAPAUSINGADULTSE"); | |
1306 } else if (life_stage_adult=="Total") { | |
1307 # Mean value for all adults. | |
1308 total_adults = apply((Previttelogenic.replications+Vittelogenic.replications+Diapausing.replications), 1, mean); | |
1309 temperature_data_frame = append_vector(temperature_data_frame, total_adults, "TOTALADULT"); | |
1310 # Standard error for all adults. | |
1311 total_adults.std_error = apply((Previttelogenic.replications+Vittelogenic.replications+Diapausing.replications), 1, sd) / sqrt(opt$replications); | |
1312 temperature_data_frame = append_vector(temperature_data_frame, total_adults.std_error, "TOTALADULTSE"); | |
1313 } | |
1314 } | |
1315 } | |
1316 | |
1317 if (plot_generations_separately) { | |
1318 m_se = get_mean_and_std_error(P.replications, F1.replications, F2.replications); | |
1319 P = m_se[[1]]; | |
1320 P.std_error = m_se[[2]]; | |
1321 F1 = m_se[[3]]; | |
1322 F1.std_error = m_se[[4]]; | |
1323 F2 = m_se[[5]]; | |
1324 F2.std_error = m_se[[6]]; | |
1325 if (process_eggs) { | |
1326 m_se = get_mean_and_std_error(P_eggs.replications, F1_eggs.replications, F2_eggs.replications); | |
1327 P_eggs = m_se[[1]]; | |
1328 P_eggs.std_error = m_se[[2]]; | |
1329 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_eggs, "EGG-P"); | |
1330 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_eggs.std_error, "EGG-P-SE"); | |
1331 F1_eggs = m_se[[3]]; | |
1332 F1_eggs.std_error = m_se[[4]]; | |
1333 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_eggs, "EGG-F1"); | |
1334 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_eggs.std_error, "EGG-F1-SE"); | |
1335 F2_eggs = m_se[[5]]; | |
1336 F2_eggs.std_error = m_se[[6]]; | |
1337 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_eggs, "EGG-F2"); | |
1338 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_eggs.std_error, "EGG-F2-SE"); | |
1339 } | |
1340 if (process_young_nymphs) { | |
1341 m_se = get_mean_and_std_error(P_young_nymphs.replications, F1_young_nymphs.replications, F2_young_nymphs.replications); | |
1342 P_young_nymphs = m_se[[1]]; | |
1343 P_young_nymphs.std_error = m_se[[2]]; | |
1344 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_young_nymphs, "YOUNGNYMPH-P"); | |
1345 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_young_nymphs.std_error, "YOUNGNYMPH-P-SE"); | |
1346 F1_young_nymphs = m_se[[3]]; | |
1347 F1_young_nymphs.std_error = m_se[[4]]; | |
1348 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_young_nymphs, "YOUNGNYMPH-F1"); | |
1349 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_young_nymphs.std_error, "YOUNGNYMPH-F1-SE"); | |
1350 F2_young_nymphs = m_se[[5]]; | |
1351 F2_young_nymphs.std_error = m_se[[6]]; | |
1352 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_young_nymphs, "YOUNGNYMPH-F2"); | |
1353 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_young_nymphs.std_error, "YOUNGNYMPH-F2-SE"); | |
1354 } | |
1355 if (process_old_nymphs) { | |
1356 m_se = get_mean_and_std_error(P_old_nymphs.replications, F1_old_nymphs.replications, F2_old_nymphs.replications); | |
1357 P_old_nymphs = m_se[[1]]; | |
1358 P_old_nymphs.std_error = m_se[[2]]; | |
1359 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_old_nymphs, "OLDNYMPH-P"); | |
1360 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_old_nymphs.std_error, "OLDNYMPH-P-SE"); | |
1361 F1_old_nymphs = m_se[[3]]; | |
1362 F1_old_nymphs.std_error = m_se[[4]]; | |
1363 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_old_nymphs, "OLDNYMPH-F1"); | |
1364 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_old_nymphs.std_error, "OLDNYMPH-F1-SE"); | |
1365 F2_old_nymphs = m_se[[5]]; | |
1366 F2_old_nymphs.std_error = m_se[[6]]; | |
1367 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_old_nymphs, "OLDNYMPH-F2"); | |
1368 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_old_nymphs.std_error, "OLDNYMPH-F2-SE"); | |
1369 } | |
1370 if (process_total_nymphs) { | |
1371 m_se = get_mean_and_std_error(P_total_nymphs.replications, F1_total_nymphs.replications, F2_total_nymphs.replications); | |
1372 P_total_nymphs = m_se[[1]]; | |
1373 P_total_nymphs.std_error = m_se[[2]]; | |
1374 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_total_nymphs, "TOTALNYMPH-P"); | |
1375 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_total_nymphs.std_error, "TOTALNYMPH-P-SE"); | |
1376 F1_total_nymphs = m_se[[3]]; | |
1377 F1_total_nymphs.std_error = m_se[[4]]; | |
1378 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_total_nymphs, "TOTALNYMPH-F1"); | |
1379 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_total_nymphs.std_error, "TOTALNYMPH-F1-SE"); | |
1380 F2_total_nymphs = m_se[[5]]; | |
1381 F2_total_nymphs.std_error = m_se[[6]]; | |
1382 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_total_nymphs, "TOTALNYMPH-F2"); | |
1383 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_total_nymphs.std_error, "TOTALNYMPH-F2-SE"); | |
1384 } | |
1385 if (process_previttelogenic_adults) { | |
1386 m_se = get_mean_and_std_error(P_previttelogenic_adults.replications, F1_previttelogenic_adults.replications, F2_previttelogenic_adults.replications); | |
1387 P_previttelogenic_adults = m_se[[1]]; | |
1388 P_previttelogenic_adults.std_error = m_se[[2]]; | |
1389 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_previttelogenic_adults, "PRE-VITADULT-P"); | |
1390 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_previttelogenic_adults.std_error, "PRE-VITADULT-P-SE"); | |
1391 F1_previttelogenic_adults = m_se[[3]]; | |
1392 F1_previttelogenic_adults.std_error = m_se[[4]]; | |
1393 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_previttelogenic_adults, "PRE-VITADULT-F1"); | |
1394 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_previttelogenic_adults.std_error, "PRE-VITADULT-F1-SE"); | |
1395 F2_previttelogenic_adults = m_se[[5]]; | |
1396 F2_previttelogenic_adults.std_error = m_se[[6]]; | |
1397 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_previttelogenic_adults, "PRE-VITADULT-F2"); | |
1398 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_previttelogenic_adults.std_error, "PRE-VITADULT-F2-SE"); | |
1399 } | |
1400 if (process_vittelogenic_adults) { | |
1401 m_se = get_mean_and_std_error(P_vittelogenic_adults.replications, F1_vittelogenic_adults.replications, F2_vittelogenic_adults.replications); | |
1402 P_vittelogenic_adults = m_se[[1]]; | |
1403 P_vittelogenic_adults.std_error = m_se[[2]]; | |
1404 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_vittelogenic_adults, "VITADULT-P"); | |
1405 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_vittelogenic_adults.std_error, "VITADULT-P-SE"); | |
1406 F1_vittelogenic_adults = m_se[[3]]; | |
1407 F1_vittelogenic_adults.std_error = m_se[[4]]; | |
1408 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_vittelogenic_adults, "VITADULT-F1"); | |
1409 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_vittelogenic_adults.std_error, "VITADULT-F1-SE"); | |
1410 F2_vittelogenic_adults = m_se[[5]]; | |
1411 F2_vittelogenic_adults.std_error = m_se[[6]]; | |
1412 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_vittelogenic_adults, "VITADULT-F2"); | |
1413 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_vittelogenic_adults.std_error, "VITADULT-F2-SE"); | |
1414 } | |
1415 if (process_diapausing_adults) { | |
1416 m_se = get_mean_and_std_error(P_diapausing_adults.replications, F1_diapausing_adults.replications, F2_diapausing_adults.replications); | |
1417 P_diapausing_adults = m_se[[1]]; | |
1418 P_diapausing_adults.std_error = m_se[[2]]; | |
1419 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_diapausing_adults, "DIAPAUSINGADULT-P"); | |
1420 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_diapausing_adults.std_error, "DIAPAUSINGADULT-P-SE"); | |
1421 F1_diapausing_adults = m_se[[3]]; | |
1422 F1_diapausing_adults.std_error = m_se[[4]]; | |
1423 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_diapausing_adults, "DIAPAUSINGADULT-F1"); | |
1424 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_diapausing_adults.std_error, "DIAPAUSINGADULT-F1-SE"); | |
1425 F2_diapausing_adults = m_se[[5]]; | |
1426 F2_diapausing_adults.std_error = m_se[[6]]; | |
1427 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_diapausing_adults, "DIAPAUSINGADULT-F2"); | |
1428 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_diapausing_adults.std_error, "DIAPAUSINGADULT-F2-SE"); | |
1429 } | |
1430 if (process_total_adults) { | |
1431 m_se = get_mean_and_std_error(P_total_adults.replications, F1_total_adults.replications, F2_total_adults.replications); | |
1432 P_total_adults = m_se[[1]]; | |
1433 P_total_adults.std_error = m_se[[2]]; | |
1434 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_total_adults, "TOTALADULT-P"); | |
1435 temperature_data_frame_P = append_vector(temperature_data_frame_P, P_total_adults.std_error, "TOTALADULT-P-SE"); | |
1436 F1_total_adults = m_se[[3]]; | |
1437 F1_total_adults.std_error = m_se[[4]]; | |
1438 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_total_adults, "TOTALADULT-F1"); | |
1439 temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_total_adults.std_error, "TOTALADULT-F1-SE"); | |
1440 F2_total_adults = m_se[[5]]; | |
1441 F2_total_adults.std_error = m_se[[6]]; | |
1442 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_total_adults, "TOTALADULT-F2"); | |
1443 temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_total_adults.std_error, "TOTALADULT-F2-SE"); | |
1444 } | |
1445 } | |
1446 | |
1447 # Save the analyzed data for combined generations. | |
1448 file_path = paste("output_data_dir", "04_combined_generations.csv", sep="/"); | |
1449 write.csv(temperature_data_frame, file=file_path, row.names=F); | |
1450 if (plot_generations_separately) { | |
1451 # Save the analyzed data for generation P. | |
1452 file_path = paste("output_data_dir", "01_generation_P.csv", sep="/"); | |
1453 write.csv(temperature_data_frame_P, file=file_path, row.names=F); | |
1454 # Save the analyzed data for generation F1. | |
1455 file_path = paste("output_data_dir", "02_generation_F1.csv", sep="/"); | |
1456 write.csv(temperature_data_frame_F1, file=file_path, row.names=F); | |
1457 # Save the analyzed data for generation F2. | |
1458 file_path = paste("output_data_dir", "03_generation_F2.csv", sep="/"); | |
1459 write.csv(temperature_data_frame_F2, file=file_path, row.names=F); | |
1460 } | |
1461 | |
1462 if (plot_generations_separately) { | |
1463 for (life_stage in life_stages) { | |
1464 if (life_stage == "Egg") { | |
1465 # Start PDF device driver. | |
1466 dev.new(width=20, height=30); | |
1467 file_path = get_file_path(life_stage, "egg_pop_by_generation.pdf") | |
1468 pdf(file=file_path, width=20, height=30, bg="white"); | |
1469 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); | |
1470 # Egg population size by generation. | |
1471 maxval = max(P_eggs+F1_eggs+F2_eggs) + 100; | |
1472 render_chart(ticks, date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, location, latitude, | |
1473 start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=P_eggs, group_std_error=P_eggs.std_error, | |
1474 group2=F1_eggs, group2_std_error=F1_eggs.std_error, group3=F2_eggs, group3_std_error=F2_eggs.std_error); | |
1475 # Turn off device driver to flush output. | |
1476 dev.off(); | |
1477 } else if (life_stage == "Nymph") { | |
1478 for (life_stage_nymph in life_stages_nymph) { | |
1479 # Start PDF device driver. | |
1480 dev.new(width=20, height=30); | |
1481 file_path = get_file_path(life_stage, "nymph_pop_by_generation.pdf", life_stage_nymph=life_stage_nymph) | |
1482 pdf(file=file_path, width=20, height=30, bg="white"); | |
1483 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); | |
1484 if (life_stage_nymph=="Young") { | |
1485 # Young nymph population size by generation. | |
1486 maxval = max(P_young_nymphs+F1_young_nymphs+F2_young_nymphs) + 100; | |
1487 group = P_young_nymphs; | |
1488 group_std_error = P_young_nymphs.std_error; | |
1489 group2 = F1_young_nymphs; | |
1490 group2_std_error = F1_young_nymphs.std_error; | |
1491 group3 = F2_young_nymphs; | |
1492 group3_std_error = F2_young_nymphs.std_error; | |
1493 } else if (life_stage_nymph=="Old") { | |
1494 # Total nymph population size by generation. | |
1495 maxval = max(P_old_nymphs+F1_old_nymphs+F2_old_nymphs) + 100; | |
1496 group = P_old_nymphs; | |
1497 group_std_error = P_old_nymphs.std_error; | |
1498 group2 = F1_old_nymphs; | |
1499 group2_std_error = F1_old_nymphs.std_error; | |
1500 group3 = F2_old_nymphs; | |
1501 group3_std_error = F2_old_nymphs.std_error; | |
1502 } else if (life_stage_nymph=="Total") { | |
1503 # Total nymph population size by generation. | |
1504 maxval = max(P_total_nymphs+F1_total_nymphs+F2_total_nymphs) + 100; | |
1505 group = P_total_nymphs; | |
1506 group_std_error = P_total_nymphs.std_error; | |
1507 group2 = F1_total_nymphs; | |
1508 group2_std_error = F1_total_nymphs.std_error; | |
1509 group3 = F2_total_nymphs; | |
1510 group3_std_error = F2_total_nymphs.std_error; | |
1511 } | |
1512 render_chart(ticks, date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, location, latitude, | |
1513 start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=group, group_std_error=group_std_error, | |
1514 group2=group2, group2_std_error=group2_std_error, group3=group3, group3_std_error=group3_std_error, life_stages_nymph=life_stage_nymph); | |
1515 # Turn off device driver to flush output. | |
1516 dev.off(); | |
1517 } | |
1518 } else if (life_stage == "Adult") { | |
1519 for (life_stage_adult in life_stages_adult) { | |
1520 # Start PDF device driver. | |
1521 dev.new(width=20, height=30); | |
1522 file_path = get_file_path(life_stage, "adult_pop_by_generation.pdf", life_stage_adult=life_stage_adult) | |
1523 pdf(file=file_path, width=20, height=30, bg="white"); | |
1524 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); | |
1525 if (life_stage_adult=="Pre-vittelogenic") { | |
1526 # Pre-vittelogenic adult population size by generation. | |
1527 maxval = max(P_previttelogenic_adults+F1_previttelogenic_adults+F2_previttelogenic_adults) + 100; | |
1528 group = P_previttelogenic_adults; | |
1529 group_std_error = P_previttelogenic_adults.std_error; | |
1530 group2 = F1_previttelogenic_adults; | |
1531 group2_std_error = F1_previttelogenic_adults.std_error; | |
1532 group3 = F2_previttelogenic_adults; | |
1533 group3_std_error = F2_previttelogenic_adults.std_error; | |
1534 } else if (life_stage_adult=="Vittelogenic") { | |
1535 # Vittelogenic adult population size by generation. | |
1536 maxval = max(P_vittelogenic_adults+F1_vittelogenic_adults+F2_vittelogenic_adults) + 100; | |
1537 group = P_vittelogenic_adults; | |
1538 group_std_error = P_vittelogenic_adults.std_error; | |
1539 group2 = F1_vittelogenic_adults; | |
1540 group2_std_error = F1_vittelogenic_adults.std_error; | |
1541 group3 = F2_vittelogenic_adults; | |
1542 group3_std_error = F2_vittelogenic_adults.std_error; | |
1543 } else if (life_stage_adult=="Diapausing") { | |
1544 # Diapausing adult population size by generation. | |
1545 maxval = max(P_diapausing_adults+F1_diapausing_adults+F2_diapausing_adults) + 100; | |
1546 group = P_diapausing_adults; | |
1547 group_std_error = P_diapausing_adults.std_error; | |
1548 group2 = F1_diapausing_adults; | |
1549 group2_std_error = F1_diapausing_adults.std_error; | |
1550 group3 = F2_diapausing_adults; | |
1551 group3_std_error = F2_diapausing_adults.std_error; | |
1552 } else if (life_stage_adult=="Total") { | |
1553 # Total adult population size by generation. | |
1554 maxval = max(P_total_adults+F1_total_adults+F2_total_adults) + 100; | |
1555 group = P_total_adults; | |
1556 group_std_error = P_total_adults.std_error; | |
1557 group2 = F1_total_adults; | |
1558 group2_std_error = F1_total_adults.std_error; | |
1559 group3 = F2_total_adults; | |
1560 group3_std_error = F2_total_adults.std_error; | |
1561 } | |
1562 render_chart(ticks, date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, location, latitude, | |
1563 start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=group, group_std_error=group_std_error, | |
1564 group2=group2, group2_std_error=group2_std_error, group3=group3, group3_std_error=group3_std_error, life_stages_adult=life_stage_adult); | |
1565 # Turn off device driver to flush output. | |
1566 dev.off(); | |
1567 } | |
1568 } else if (life_stage == "Total") { | |
1569 # Start PDF device driver. | |
1570 # Name collection elements so that they | |
1571 # are displayed in logical order. | |
1572 dev.new(width=20, height=30); | |
1573 file_path = get_file_path(life_stage, "total_pop_by_generation.pdf") | |
1574 pdf(file=file_path, width=20, height=30, bg="white"); | |
1575 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); | |
1576 # Total population size by generation. | |
1577 maxval = max(P+F1+F2) + 100; | |
1578 render_chart(ticks, date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, location, latitude, | |
1579 start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=P, group_std_error=P.std_error, | |
1580 group2=F1, group2_std_error=F1.std_error, group3=F2, group3_std_error=F2.std_error); | |
1581 # Turn off device driver to flush output. | |
1582 dev.off(); | |
1583 } | |
1584 } | |
1585 } else { | |
1586 for (life_stage in life_stages) { | |
1587 if (life_stage == "Egg") { | |
1588 # Start PDF device driver. | |
1589 dev.new(width=20, height=30); | |
1590 file_path = get_file_path(life_stage, "egg_pop.pdf") | |
1591 pdf(file=file_path, width=20, height=30, bg="white"); | |
1592 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); | |
1593 # Egg population size. | |
1594 maxval = max(eggs+eggs.std_error) + 100; | |
1595 render_chart(ticks, date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, location, latitude, | |
1596 start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=eggs, group_std_error=eggs.std_error); | |
1597 # Turn off device driver to flush output. | |
1598 dev.off(); | |
1599 } else if (life_stage == "Nymph") { | |
1600 for (life_stage_nymph in life_stages_nymph) { | |
1601 # Start PDF device driver. | |
1602 dev.new(width=20, height=30); | |
1603 file_path = get_file_path(life_stage, "nymph_pop.pdf", life_stage_nymph=life_stage_nymph) | |
1604 pdf(file=file_path, width=20, height=30, bg="white"); | |
1605 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); | |
1606 if (life_stage_nymph=="Total") { | |
1607 # Total nymph population size. | |
1608 group = total_nymphs; | |
1609 group_std_error = total_nymphs.std_error; | |
1610 } else if (life_stage_nymph=="Young") { | |
1611 # Young nymph population size. | |
1612 group = young_nymphs; | |
1613 group_std_error = young_nymphs.std_error; | |
1614 } else if (life_stage_nymph=="Old") { | |
1615 # Old nymph population size. | |
1616 group = old_nymphs; | |
1617 group_std_error = old_nymphs.std_error; | |
1618 } | |
1619 maxval = max(group+group_std_error) + 100; | |
1620 render_chart(ticks, date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, location, latitude, | |
1621 start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=group, group_std_error=group_std_error, | |
1622 life_stages_nymph=life_stage_nymph); | |
1623 # Turn off device driver to flush output. | |
1624 dev.off(); | |
1625 } | |
1626 } else if (life_stage == "Adult") { | |
1627 for (life_stage_adult in life_stages_adult) { | |
1628 # Start PDF device driver. | |
1629 dev.new(width=20, height=30); | |
1630 file_path = get_file_path(life_stage, "adult_pop.pdf", life_stage_adult=life_stage_adult) | |
1631 pdf(file=file_path, width=20, height=30, bg="white"); | |
1632 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); | |
1633 if (life_stage_adult=="Total") { | |
1634 # Total adult population size. | |
1635 group = total_adults; | |
1636 group_std_error = total_adults.std_error | |
1637 } else if (life_stage_adult=="Pre-vittelogenic") { | |
1638 # Pre-vittelogenic adult population size. | |
1639 group = previttelogenic_adults; | |
1640 group_std_error = previttelogenic_adults.std_error | |
1641 } else if (life_stage_adult=="Vittelogenic") { | |
1642 # Vittelogenic adult population size. | |
1643 group = vittelogenic_adults; | |
1644 group_std_error = vittelogenic_adults.std_error | |
1645 } else if (life_stage_adult=="Diapausing") { | |
1646 # Diapausing adult population size. | |
1647 group = diapausing_adults; | |
1648 group_std_error = diapausing_adults.std_error | |
1649 } | |
1650 maxval = max(group+group_std_error) + 100; | |
1651 render_chart(ticks, date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, location, latitude, | |
1652 start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=group, group_std_error=group_std_error, | |
1653 life_stages_adult=life_stage_adult); | |
1654 # Turn off device driver to flush output. | |
1655 dev.off(); | |
1656 } | |
1657 } else if (life_stage == "Total") { | |
1658 # Start PDF device driver. | |
1659 dev.new(width=20, height=30); | |
1660 file_path = get_file_path(life_stage, "total_pop.pdf") | |
1661 pdf(file=file_path, width=20, height=30, bg="white"); | |
1662 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); | |
1663 # Total population size. | |
1664 maxval = max(eggs+eggs.std_error, total_nymphs+total_nymphs.std_error, total_adults+total_adults.std_error) + 100; | |
1665 render_chart(ticks, date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, location, latitude, | |
1666 start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=total_adults, group_std_error=total_adults.std_error, | |
1667 group2=total_nymphs, group2_std_error=total_nymphs.std_error, group3=eggs, group3_std_error=eggs.std_error); | |
1668 # Turn off device driver to flush output. | |
1669 dev.off(); | |
1670 } | |
1671 } | |
1672 } |