Mercurial > repos > greg > ideas2
diff create_heatmap.R @ 0:b785bcfe5cd0 draft default tip
Uploaded
author | greg |
---|---|
date | Mon, 12 Feb 2018 09:52:26 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/create_heatmap.R Mon Feb 12 09:52:26 2018 -0500 @@ -0,0 +1,129 @@ +#!/usr/bin/env Rscript + +build_state_color_codes_vector <- function(data_matrix, histone_mark_color, color_code_type="rgb") { + # Return vector of color code strings for each state + # in the received data_matrix. The values will be either + # rgb strings (e.g., 255,255,0) or hex code strings (e.g., + # #FFFFFF) depending on the value of color_code_type, + # which can be one of "rgb" or "hex". + range_vector = apply(data_matrix, 1, range); + mm = NULL; + for(i in 1:dim(data_matrix)[1]) { + range_val1 = range_vector[1, i] + 1e-10; + range_val2 = range_vector[2, i]; + mm = rbind(mm, (data_matrix[i,] - range_val1) / (range_val2 - range_val1)); + } + mm = mm^5; + if(dim(mm)[2] > 1) { + mm = mm / (apply(mm, 1, sum) + 1e-10); + } + state_color = mm%*%histone_mark_color; + s = apply(data_matrix, 1, max); + s = (s - min(s)) / (max(s) - min(s) + 1e-10); + state_color = round(255 - (255 - state_color) * s/0.5); + state_color[state_color<0] = 0; + if (identical(color_code_type, "rgb")) { + # Here rgb_values is something like 255,255,255 217,98,0. + state_colors_vector = paste(state_color[,1], state_color[,2], state_color[,3], sep=","); + } else { + # Here hex_code_strings is something like #FFFFFF #D96200 + # which is a one-to-one map to the above rgb_values. + hex_code_strings = t(apply(state_color, 1, function(x){rgb2hsv(x[1], x[2], x[3])})); + state_colors_vector = apply(hex_code_strings, 1, function(x){hsv(x[1], x[2], x[3])}); + } + return(state_colors_vector); +} + +create_heatmap <- function(data_frame, output_file_name, colors=c("white", "dark blue")) { + # Plot a heatmap for a .para / .state combination based on the + # received data_frame which was created by reading the .para file. + num_columns = dim(data_frame)[2]; + num_rows = dim(data_frame)[1]; + p = (sqrt(9 + 8 * (num_columns-1)) - 3) / 2; + data_matrix = as.matrix(data_frame[,1+1:p] / data_frame[,1]); + state_colors_vector = get_state_color_codes_vector(data_frame, colors=colors, color_code_type="hex"); + # Open the output PDF file. + pdf(file=output_file_name); + # rownames(data_matrix) are the state indexes, + # and will look something like this: + # 0 (5.89%) 1 (91.78%) 2 (1.48%) 3 (0.86%) + rownames(data_matrix) = paste(1:num_rows-1, " (", round(data_frame[,1]/sum(data_frame[,1])*10000)/100, "%)", sep=""); + # Set graphical parameters. + par(mar=c(6, 1, 1, 6)); + # Create a vector containing the minimum and maximum values in data_matrix. + min_max_vector = range(data_matrix); + # Create a color palette. + my_palette = colorRampPalette(colors)(n=100); + default_palette = palette(my_palette); + # Plot the heatmap for the current .para / .state combination. + plot(NA, NA, xlim=c(0, p+0.7), ylim=c(0, num_rows), xaxt="n", yaxt="n", xlab=NA, ylab=NA, frame.plot=F); + axis(1, at=1:p-0.5, labels=colnames(data_matrix), las=2); + axis(4, at=1:num_rows-0.5, labels=rownames(data_matrix), las=2); + col = round((t(data_matrix) - min_max_vector[1]) / (min_max_vector[2] - min_max_vector[1]) * 100); + rect(rep(1:p-1, num_rows), rep(1:num_rows-1, each=p), rep(1:p, num_rows), rep(1:num_rows, each=p), col=col); + rect(rep(p+0.2, num_rows), 1:num_rows-0.8, rep(p+0.8, num_rows), 1:num_rows-0.2, col=state_colors_vector); + palette(default_palette); + dev.off(); +} + +get_state_color_codes_vector <- function(data_frame, colors=c("white", "dark blue"), color_code_type="rgb") { + # Return a vector of color strings for each row in data_frame. + # These string will either be rgb (e.g., 255,255,0) or hex codes + # (e.g., #FFFFFF), depending on the value of color_code_type. + num_columns = dim(data_frame)[2]; + num_rows = dim(data_frame)[1]; + p = (sqrt(9 + 8 * (num_columns-1)) - 3) / 2; + data_matrix = as.matrix(data_frame[,1+1:p] / data_frame[,1]); + # colnames(data_matrix) will look something like this: + # H3K4me3 H3K4me1 DNase H3K79me2 + colnames(data_matrix) = colnames(data_frame)[1+1:p]; + histone_marks = colnames(data_matrix); + histone_mark_color = t(col2rgb(terrain.colors(ceiling(p))[1:p])); + # Specify colors for common feature names like "h3k4me3". + # These are histone marks frequently used to identify + # promoter activities in a cell, and are often displayed + # in shades of red. + for(i in 1:length(histone_marks)) { + if(regexpr("h3k4me3", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(255, 0, 0); + } + if(regexpr("h3k4me2", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(250, 100, 0); + } + if(regexpr("h3k4me1", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(250, 250, 0); + } + if(regexpr("h3k36me3", tolower(histone_marks[i]))>0) { + histone_mark_color[i,] = c(0, 150, 0); + } + if(regexpr("h2a", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(0, 150, 150); + } + if(regexpr("dnase", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(0, 200, 200); + } + if(regexpr("h3k9ac", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(250, 0, 200); + } + if(regexpr("h3k9me3", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(100, 100, 100); + } + if(regexpr("h3k27ac", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(250, 150, 0); + } + if(regexpr("h3k27me3", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(0, 0, 200); + } + if(regexpr("h3k79me2", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(200, 0, 200); + } + if(regexpr("h4k20me1", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(50, 200, 50); + } + if(regexpr("ctcf", tolower(histone_marks[i])) > 0) { + histone_mark_color[i,] = c(200, 0, 250); + } + state_colors_vector = build_state_color_codes_vector(data_matrix, histone_mark_color, color_code_type=color_code_type); + } + return(state_colors_vector); +} \ No newline at end of file