Mercurial > repos > greg > ideas2
comparison create_heatmap.R @ 0:b785bcfe5cd0 draft default tip
Uploaded
| author | greg |
|---|---|
| date | Mon, 12 Feb 2018 09:52:26 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:b785bcfe5cd0 |
|---|---|
| 1 #!/usr/bin/env Rscript | |
| 2 | |
| 3 build_state_color_codes_vector <- function(data_matrix, histone_mark_color, color_code_type="rgb") { | |
| 4 # Return vector of color code strings for each state | |
| 5 # in the received data_matrix. The values will be either | |
| 6 # rgb strings (e.g., 255,255,0) or hex code strings (e.g., | |
| 7 # #FFFFFF) depending on the value of color_code_type, | |
| 8 # which can be one of "rgb" or "hex". | |
| 9 range_vector = apply(data_matrix, 1, range); | |
| 10 mm = NULL; | |
| 11 for(i in 1:dim(data_matrix)[1]) { | |
| 12 range_val1 = range_vector[1, i] + 1e-10; | |
| 13 range_val2 = range_vector[2, i]; | |
| 14 mm = rbind(mm, (data_matrix[i,] - range_val1) / (range_val2 - range_val1)); | |
| 15 } | |
| 16 mm = mm^5; | |
| 17 if(dim(mm)[2] > 1) { | |
| 18 mm = mm / (apply(mm, 1, sum) + 1e-10); | |
| 19 } | |
| 20 state_color = mm%*%histone_mark_color; | |
| 21 s = apply(data_matrix, 1, max); | |
| 22 s = (s - min(s)) / (max(s) - min(s) + 1e-10); | |
| 23 state_color = round(255 - (255 - state_color) * s/0.5); | |
| 24 state_color[state_color<0] = 0; | |
| 25 if (identical(color_code_type, "rgb")) { | |
| 26 # Here rgb_values is something like 255,255,255 217,98,0. | |
| 27 state_colors_vector = paste(state_color[,1], state_color[,2], state_color[,3], sep=","); | |
| 28 } else { | |
| 29 # Here hex_code_strings is something like #FFFFFF #D96200 | |
| 30 # which is a one-to-one map to the above rgb_values. | |
| 31 hex_code_strings = t(apply(state_color, 1, function(x){rgb2hsv(x[1], x[2], x[3])})); | |
| 32 state_colors_vector = apply(hex_code_strings, 1, function(x){hsv(x[1], x[2], x[3])}); | |
| 33 } | |
| 34 return(state_colors_vector); | |
| 35 } | |
| 36 | |
| 37 create_heatmap <- function(data_frame, output_file_name, colors=c("white", "dark blue")) { | |
| 38 # Plot a heatmap for a .para / .state combination based on the | |
| 39 # received data_frame which was created by reading the .para file. | |
| 40 num_columns = dim(data_frame)[2]; | |
| 41 num_rows = dim(data_frame)[1]; | |
| 42 p = (sqrt(9 + 8 * (num_columns-1)) - 3) / 2; | |
| 43 data_matrix = as.matrix(data_frame[,1+1:p] / data_frame[,1]); | |
| 44 state_colors_vector = get_state_color_codes_vector(data_frame, colors=colors, color_code_type="hex"); | |
| 45 # Open the output PDF file. | |
| 46 pdf(file=output_file_name); | |
| 47 # rownames(data_matrix) are the state indexes, | |
| 48 # and will look something like this: | |
| 49 # 0 (5.89%) 1 (91.78%) 2 (1.48%) 3 (0.86%) | |
| 50 rownames(data_matrix) = paste(1:num_rows-1, " (", round(data_frame[,1]/sum(data_frame[,1])*10000)/100, "%)", sep=""); | |
| 51 # Set graphical parameters. | |
| 52 par(mar=c(6, 1, 1, 6)); | |
| 53 # Create a vector containing the minimum and maximum values in data_matrix. | |
| 54 min_max_vector = range(data_matrix); | |
| 55 # Create a color palette. | |
| 56 my_palette = colorRampPalette(colors)(n=100); | |
| 57 default_palette = palette(my_palette); | |
| 58 # Plot the heatmap for the current .para / .state combination. | |
| 59 plot(NA, NA, xlim=c(0, p+0.7), ylim=c(0, num_rows), xaxt="n", yaxt="n", xlab=NA, ylab=NA, frame.plot=F); | |
| 60 axis(1, at=1:p-0.5, labels=colnames(data_matrix), las=2); | |
| 61 axis(4, at=1:num_rows-0.5, labels=rownames(data_matrix), las=2); | |
| 62 col = round((t(data_matrix) - min_max_vector[1]) / (min_max_vector[2] - min_max_vector[1]) * 100); | |
| 63 rect(rep(1:p-1, num_rows), rep(1:num_rows-1, each=p), rep(1:p, num_rows), rep(1:num_rows, each=p), col=col); | |
| 64 rect(rep(p+0.2, num_rows), 1:num_rows-0.8, rep(p+0.8, num_rows), 1:num_rows-0.2, col=state_colors_vector); | |
| 65 palette(default_palette); | |
| 66 dev.off(); | |
| 67 } | |
| 68 | |
| 69 get_state_color_codes_vector <- function(data_frame, colors=c("white", "dark blue"), color_code_type="rgb") { | |
| 70 # Return a vector of color strings for each row in data_frame. | |
| 71 # These string will either be rgb (e.g., 255,255,0) or hex codes | |
| 72 # (e.g., #FFFFFF), depending on the value of color_code_type. | |
| 73 num_columns = dim(data_frame)[2]; | |
| 74 num_rows = dim(data_frame)[1]; | |
| 75 p = (sqrt(9 + 8 * (num_columns-1)) - 3) / 2; | |
| 76 data_matrix = as.matrix(data_frame[,1+1:p] / data_frame[,1]); | |
| 77 # colnames(data_matrix) will look something like this: | |
| 78 # H3K4me3 H3K4me1 DNase H3K79me2 | |
| 79 colnames(data_matrix) = colnames(data_frame)[1+1:p]; | |
| 80 histone_marks = colnames(data_matrix); | |
| 81 histone_mark_color = t(col2rgb(terrain.colors(ceiling(p))[1:p])); | |
| 82 # Specify colors for common feature names like "h3k4me3". | |
| 83 # These are histone marks frequently used to identify | |
| 84 # promoter activities in a cell, and are often displayed | |
| 85 # in shades of red. | |
| 86 for(i in 1:length(histone_marks)) { | |
| 87 if(regexpr("h3k4me3", tolower(histone_marks[i])) > 0) { | |
| 88 histone_mark_color[i,] = c(255, 0, 0); | |
| 89 } | |
| 90 if(regexpr("h3k4me2", tolower(histone_marks[i])) > 0) { | |
| 91 histone_mark_color[i,] = c(250, 100, 0); | |
| 92 } | |
| 93 if(regexpr("h3k4me1", tolower(histone_marks[i])) > 0) { | |
| 94 histone_mark_color[i,] = c(250, 250, 0); | |
| 95 } | |
| 96 if(regexpr("h3k36me3", tolower(histone_marks[i]))>0) { | |
| 97 histone_mark_color[i,] = c(0, 150, 0); | |
| 98 } | |
| 99 if(regexpr("h2a", tolower(histone_marks[i])) > 0) { | |
| 100 histone_mark_color[i,] = c(0, 150, 150); | |
| 101 } | |
| 102 if(regexpr("dnase", tolower(histone_marks[i])) > 0) { | |
| 103 histone_mark_color[i,] = c(0, 200, 200); | |
| 104 } | |
| 105 if(regexpr("h3k9ac", tolower(histone_marks[i])) > 0) { | |
| 106 histone_mark_color[i,] = c(250, 0, 200); | |
| 107 } | |
| 108 if(regexpr("h3k9me3", tolower(histone_marks[i])) > 0) { | |
| 109 histone_mark_color[i,] = c(100, 100, 100); | |
| 110 } | |
| 111 if(regexpr("h3k27ac", tolower(histone_marks[i])) > 0) { | |
| 112 histone_mark_color[i,] = c(250, 150, 0); | |
| 113 } | |
| 114 if(regexpr("h3k27me3", tolower(histone_marks[i])) > 0) { | |
| 115 histone_mark_color[i,] = c(0, 0, 200); | |
| 116 } | |
| 117 if(regexpr("h3k79me2", tolower(histone_marks[i])) > 0) { | |
| 118 histone_mark_color[i,] = c(200, 0, 200); | |
| 119 } | |
| 120 if(regexpr("h4k20me1", tolower(histone_marks[i])) > 0) { | |
| 121 histone_mark_color[i,] = c(50, 200, 50); | |
| 122 } | |
| 123 if(regexpr("ctcf", tolower(histone_marks[i])) > 0) { | |
| 124 histone_mark_color[i,] = c(200, 0, 250); | |
| 125 } | |
| 126 state_colors_vector = build_state_color_codes_vector(data_matrix, histone_mark_color, color_code_type=color_code_type); | |
| 127 } | |
| 128 return(state_colors_vector); | |
| 129 } |
