Mercurial > repos > greg > ideas
changeset 147:387b460ddd43 draft
Uploaded
author | greg |
---|---|
date | Thu, 11 Jan 2018 10:21:13 -0500 |
parents | 9e0b4ceba74a |
children | 0ba72d5ca209 |
files | create_heatmap.R |
diffstat | 1 files changed, 65 insertions(+), 49 deletions(-) [+] |
line wrap: on
line diff
--- a/create_heatmap.R Fri Jan 05 13:55:05 2018 -0500 +++ b/create_heatmap.R Thu Jan 11 10:21:13 2018 -0500 @@ -1,36 +1,81 @@ #!/usr/bin/env Rscript -create_heatmap<-function(data_frame, output_file_name=NULL) { - # Plot a heatmap for a .para / .state combination - # based on the received data_frame which was created - # by reading the .para file. - num_columns = dim(data_frame)[2]; - num_rows = dim(data_frame)[1]; - p = (sqrt(9 + 8 * (num_columns-1)) - 3) / 2; - data_matrix = as.matrix(data_frame[,1+1:p] / data_frame[,1]); - colnames(data_matrix) = colnames(data_frame)[1+1:p]; - histone_marks = colnames(data_matrix); +build_state_color_codes_vector <- function(data_matrix, histone_mark_color, color_code_type="rgb") { + # Return vector of color code strings for each state + # in the received data_matrix. The values will be either + # rgb strings (e.g., 255,255,0) or hex code strings (e.g., + # #FFFFFF) depending on the value of color_code_type, + # which can be one of "rgb" or "hex". + range_vector = apply(data_matrix, 1, range); + mm = NULL; + for(i in 1:dim(data_matrix)[1]) { + range_val1 = range_vector[1, i] + 1e-10; + range_val2 = range_vector[2, i]; + mm = rbind(mm, (data_matrix[i,] - range_val1) / (range_val2 - range_val1)); + } + mm = mm^5; + if(dim(mm)[2] > 1) { + mm = mm / (apply(mm, 1, sum) + 1e-10); + } + state_color = mm%*%histone_mark_color; + s = apply(data_matrix, 1, max); + s = (s - min(s)) / (max(s) - min(s) + 1e-10); + state_color = round(255 - (255 - state_color) * s/0.5); + state_color[state_color<0] = 0; + if (identical(color_code_type, "rgb")) { + # Here rgb_values is something like 255,255,255 217,98,0. + state_colors_vector = paste(state_color[,1], state_color[,2], state_color[,3], sep=","); + } else { + # Here hex_code_strings is something like #FFFFFF #D96200 + # which is a one-to-one map to the above rgb_values. + hex_code_strings = t(apply(state_color, 1, function(x){rgb2hsv(x[1], x[2], x[3])})); + state_colors_vector = apply(hex_code_strings, 1, function(x){hsv(x[1], x[2], x[3])}); + } + return(state_colors_vector); +} + +create_heatmap <- function(data_frame, output_file_name, colors=c("white", "dark blue")) { + # Plot a heatmap for a .para / .state combination based on the + # received data_frame which was created by reading the .para file. + state_colors_vector = get_state_color_codes_vector(data_frame, colors=colors, color_code_type="hex"); + # Open the output PDF file. + pdf(file=output_file_name); + # rownames(data_matrix) are the state indexes, + # and will look something like this: + # 0 (5.89%) 1 (91.78%) 2 (1.48%) 3 (0.86%) rownames(data_matrix) = paste(1:num_rows-1, " (", round(data_frame[,1]/sum(data_frame[,1])*10000)/100, "%)", sep=""); - if (!is.null(output_file_name)) { - # Open the output PDF file. - pdf(file=output_file_name); - } # Set graphical parameters. par(mar=c(6, 1, 1, 6)); # Create a vector containing the minimum and maximum values in data_matrix. min_max_vector = range(data_matrix); # Create a color palette. - my_palette = colorRampPalette(c("white", "dark blue"))(n=100); - defpalette = palette(my_palette); + my_palette = colorRampPalette(colors)(n=100); + default_palette = palette(my_palette); # Plot the heatmap for the current .para / .state combination. plot(NA, NA, xlim=c(0, p+0.7), ylim=c(0, num_rows), xaxt="n", yaxt="n", xlab=NA, ylab=NA, frame.plot=F); axis(1, at=1:p-0.5, labels=colnames(data_matrix), las=2); axis(4, at=1:num_rows-0.5, labels=rownames(data_matrix), las=2); col = round((t(data_matrix) - min_max_vector[1]) / (min_max_vector[2] - min_max_vector[1]) * 100); rect(rep(1:p-1, num_rows), rep(1:num_rows-1, each=p), rep(1:p, num_rows), rep(1:num_rows, each=p), col=col); - histone_mark_color = t(col2rgb(terrain.colors(ceiling(p))[1:p])); + rect(rep(p+0.2, num_rows), 1:num_rows-0.8, rep(p+0.8, num_rows), 1:num_rows-0.2, col=state_colors_vector); + palette(default_palette); + dev.off(); +} - # Specify a color for common feature names like "h3k4me3". +get_state_color_codes_vector <- function(data_frame, colors=c("white", "dark blue"), color_code_type="rgb") { + # Return a vector of color strings for each row in data_frame. + # These string will either be rgb (e.g., 255,255,0) or hex codes + # (e.g., #FFFFFF), depending on the value of color_code_type. + num_columns = dim(data_frame)[2]; + num_rows = dim(data_frame)[1]; + p = (sqrt(9 + 8 * (num_columns-1)) - 3) / 2; + data_matrix = as.matrix(data_frame[,1+1:p] / data_frame[,1]); + # colnames(data_matrix) will look something like this: + # H3K4me3 H3K4me1 DNase H3K79me2 + colnames(data_matrix) = colnames(data_frame)[1+1:p]; + histone_marks = colnames(data_matrix); + histone_mark_color = t(col2rgb(terrain.colors(ceiling(p))[1:p])); + # Specify colors for common feature names like "h3k4me3". # These are histone marks frequently used to identify # promoter activities in a cell, and are often displayed # in shades of red. @@ -74,36 +119,7 @@ if(regexpr("ctcf", tolower(histone_marks[i])) > 0) { histone_mark_color[i,] = c(200, 0, 250); } - state_color = get_state_color(data_matrix, histone_mark_color)[,]; - } - rect(rep(p+0.2, num_rows), 1:num_rows-0.8, rep(p+0.8, num_rows), 1:num_rows-0.2, col=state_color[,2]); - palette(defpalette); - if (!is.null(output_file_name)) { - dev.off(); + state_colors_vector = build_state_color_codes_vector(data_matrix, histone_mark_color, color_code_type=color_code_type); } - return(state_color); -} - -get_state_color <- function(data_matrix, histone_mark_color) { - range_vector = apply(data_matrix, 1, range); - mm = NULL; - for(i in 1:dim(data_matrix)[1]) { - range_val1 = range_vector[1, i] + 1e-10; - range_val2 = range_vector[2, i]; - mm = rbind(mm, (data_matrix[i,] - range_val1) / (range_val2 - range_val1)); - } - mm = mm^5; - if(dim(mm)[2] > 1) { - mm = mm / (apply(mm, 1, sum) + 1e-10); - } - state_color = mm%*%histone_mark_color; - s = apply(data_matrix, 1, max); - s = (s - min(s)) / (max(s) - min(s) + 1e-10); - state_color = round(255 - (255 - state_color) * s/0.5); - state_color[state_color<0] = 0; - rt = paste(state_color[,1], state_color[,2], state_color[,3], sep=","); - h = t(apply(state_color, 1, function(x){rgb2hsv(x[1], x[2], x[3])})); - h = apply(h, 1, function(x){hsv(x[1], x[2], x[3])}); - rt = cbind(rt, h); - return(rt); + return(state_colors_vector); } \ No newline at end of file