Mercurial > repos > greg > ideas
comparison create_heatmap.R @ 147:387b460ddd43 draft
Uploaded
| author | greg |
|---|---|
| date | Thu, 11 Jan 2018 10:21:13 -0500 |
| parents | 9e0b4ceba74a |
| children | 0ba72d5ca209 |
comparison
equal
deleted
inserted
replaced
| 146:9e0b4ceba74a | 147:387b460ddd43 |
|---|---|
| 1 #!/usr/bin/env Rscript | 1 #!/usr/bin/env Rscript |
| 2 | 2 |
| 3 create_heatmap<-function(data_frame, output_file_name=NULL) { | 3 build_state_color_codes_vector <- function(data_matrix, histone_mark_color, color_code_type="rgb") { |
| 4 # Plot a heatmap for a .para / .state combination | 4 # Return vector of color code strings for each state |
| 5 # based on the received data_frame which was created | 5 # in the received data_matrix. The values will be either |
| 6 # by reading the .para file. | 6 # rgb strings (e.g., 255,255,0) or hex code strings (e.g., |
| 7 num_columns = dim(data_frame)[2]; | 7 # #FFFFFF) depending on the value of color_code_type, |
| 8 num_rows = dim(data_frame)[1]; | 8 # which can be one of "rgb" or "hex". |
| 9 p = (sqrt(9 + 8 * (num_columns-1)) - 3) / 2; | 9 range_vector = apply(data_matrix, 1, range); |
| 10 data_matrix = as.matrix(data_frame[,1+1:p] / data_frame[,1]); | 10 mm = NULL; |
| 11 colnames(data_matrix) = colnames(data_frame)[1+1:p]; | 11 for(i in 1:dim(data_matrix)[1]) { |
| 12 histone_marks = colnames(data_matrix); | 12 range_val1 = range_vector[1, i] + 1e-10; |
| 13 range_val2 = range_vector[2, i]; | |
| 14 mm = rbind(mm, (data_matrix[i,] - range_val1) / (range_val2 - range_val1)); | |
| 15 } | |
| 16 mm = mm^5; | |
| 17 if(dim(mm)[2] > 1) { | |
| 18 mm = mm / (apply(mm, 1, sum) + 1e-10); | |
| 19 } | |
| 20 state_color = mm%*%histone_mark_color; | |
| 21 s = apply(data_matrix, 1, max); | |
| 22 s = (s - min(s)) / (max(s) - min(s) + 1e-10); | |
| 23 state_color = round(255 - (255 - state_color) * s/0.5); | |
| 24 state_color[state_color<0] = 0; | |
| 25 if (identical(color_code_type, "rgb")) { | |
| 26 # Here rgb_values is something like 255,255,255 217,98,0. | |
| 27 state_colors_vector = paste(state_color[,1], state_color[,2], state_color[,3], sep=","); | |
| 28 } else { | |
| 29 # Here hex_code_strings is something like #FFFFFF #D96200 | |
| 30 # which is a one-to-one map to the above rgb_values. | |
| 31 hex_code_strings = t(apply(state_color, 1, function(x){rgb2hsv(x[1], x[2], x[3])})); | |
| 32 state_colors_vector = apply(hex_code_strings, 1, function(x){hsv(x[1], x[2], x[3])}); | |
| 33 } | |
| 34 return(state_colors_vector); | |
| 35 } | |
| 36 | |
| 37 create_heatmap <- function(data_frame, output_file_name, colors=c("white", "dark blue")) { | |
| 38 # Plot a heatmap for a .para / .state combination based on the | |
| 39 # received data_frame which was created by reading the .para file. | |
| 40 state_colors_vector = get_state_color_codes_vector(data_frame, colors=colors, color_code_type="hex"); | |
| 41 # Open the output PDF file. | |
| 42 pdf(file=output_file_name); | |
| 43 # rownames(data_matrix) are the state indexes, | |
| 44 # and will look something like this: | |
| 45 # 0 (5.89%) 1 (91.78%) 2 (1.48%) 3 (0.86%) | |
| 13 rownames(data_matrix) = paste(1:num_rows-1, " (", round(data_frame[,1]/sum(data_frame[,1])*10000)/100, "%)", sep=""); | 46 rownames(data_matrix) = paste(1:num_rows-1, " (", round(data_frame[,1]/sum(data_frame[,1])*10000)/100, "%)", sep=""); |
| 14 if (!is.null(output_file_name)) { | |
| 15 # Open the output PDF file. | |
| 16 pdf(file=output_file_name); | |
| 17 } | |
| 18 # Set graphical parameters. | 47 # Set graphical parameters. |
| 19 par(mar=c(6, 1, 1, 6)); | 48 par(mar=c(6, 1, 1, 6)); |
| 20 # Create a vector containing the minimum and maximum values in data_matrix. | 49 # Create a vector containing the minimum and maximum values in data_matrix. |
| 21 min_max_vector = range(data_matrix); | 50 min_max_vector = range(data_matrix); |
| 22 # Create a color palette. | 51 # Create a color palette. |
| 23 my_palette = colorRampPalette(c("white", "dark blue"))(n=100); | 52 my_palette = colorRampPalette(colors)(n=100); |
| 24 defpalette = palette(my_palette); | 53 default_palette = palette(my_palette); |
| 25 # Plot the heatmap for the current .para / .state combination. | 54 # Plot the heatmap for the current .para / .state combination. |
| 26 plot(NA, NA, xlim=c(0, p+0.7), ylim=c(0, num_rows), xaxt="n", yaxt="n", xlab=NA, ylab=NA, frame.plot=F); | 55 plot(NA, NA, xlim=c(0, p+0.7), ylim=c(0, num_rows), xaxt="n", yaxt="n", xlab=NA, ylab=NA, frame.plot=F); |
| 27 axis(1, at=1:p-0.5, labels=colnames(data_matrix), las=2); | 56 axis(1, at=1:p-0.5, labels=colnames(data_matrix), las=2); |
| 28 axis(4, at=1:num_rows-0.5, labels=rownames(data_matrix), las=2); | 57 axis(4, at=1:num_rows-0.5, labels=rownames(data_matrix), las=2); |
| 29 col = round((t(data_matrix) - min_max_vector[1]) / (min_max_vector[2] - min_max_vector[1]) * 100); | 58 col = round((t(data_matrix) - min_max_vector[1]) / (min_max_vector[2] - min_max_vector[1]) * 100); |
| 30 rect(rep(1:p-1, num_rows), rep(1:num_rows-1, each=p), rep(1:p, num_rows), rep(1:num_rows, each=p), col=col); | 59 rect(rep(1:p-1, num_rows), rep(1:num_rows-1, each=p), rep(1:p, num_rows), rep(1:num_rows, each=p), col=col); |
| 60 rect(rep(p+0.2, num_rows), 1:num_rows-0.8, rep(p+0.8, num_rows), 1:num_rows-0.2, col=state_colors_vector); | |
| 61 palette(default_palette); | |
| 62 dev.off(); | |
| 63 } | |
| 64 | |
| 65 get_state_color_codes_vector <- function(data_frame, colors=c("white", "dark blue"), color_code_type="rgb") { | |
| 66 # Return a vector of color strings for each row in data_frame. | |
| 67 # These string will either be rgb (e.g., 255,255,0) or hex codes | |
| 68 # (e.g., #FFFFFF), depending on the value of color_code_type. | |
| 69 num_columns = dim(data_frame)[2]; | |
| 70 num_rows = dim(data_frame)[1]; | |
| 71 p = (sqrt(9 + 8 * (num_columns-1)) - 3) / 2; | |
| 72 data_matrix = as.matrix(data_frame[,1+1:p] / data_frame[,1]); | |
| 73 # colnames(data_matrix) will look something like this: | |
| 74 # H3K4me3 H3K4me1 DNase H3K79me2 | |
| 75 colnames(data_matrix) = colnames(data_frame)[1+1:p]; | |
| 76 histone_marks = colnames(data_matrix); | |
| 31 histone_mark_color = t(col2rgb(terrain.colors(ceiling(p))[1:p])); | 77 histone_mark_color = t(col2rgb(terrain.colors(ceiling(p))[1:p])); |
| 32 | 78 # Specify colors for common feature names like "h3k4me3". |
| 33 # Specify a color for common feature names like "h3k4me3". | |
| 34 # These are histone marks frequently used to identify | 79 # These are histone marks frequently used to identify |
| 35 # promoter activities in a cell, and are often displayed | 80 # promoter activities in a cell, and are often displayed |
| 36 # in shades of red. | 81 # in shades of red. |
| 37 for(i in 1:length(histone_marks)) { | 82 for(i in 1:length(histone_marks)) { |
| 38 if(regexpr("h3k4me3", tolower(histone_marks[i])) > 0) { | 83 if(regexpr("h3k4me3", tolower(histone_marks[i])) > 0) { |
| 72 histone_mark_color[i,] = c(50, 200, 50); | 117 histone_mark_color[i,] = c(50, 200, 50); |
| 73 } | 118 } |
| 74 if(regexpr("ctcf", tolower(histone_marks[i])) > 0) { | 119 if(regexpr("ctcf", tolower(histone_marks[i])) > 0) { |
| 75 histone_mark_color[i,] = c(200, 0, 250); | 120 histone_mark_color[i,] = c(200, 0, 250); |
| 76 } | 121 } |
| 77 state_color = get_state_color(data_matrix, histone_mark_color)[,]; | 122 state_colors_vector = build_state_color_codes_vector(data_matrix, histone_mark_color, color_code_type=color_code_type); |
| 78 } | 123 } |
| 79 rect(rep(p+0.2, num_rows), 1:num_rows-0.8, rep(p+0.8, num_rows), 1:num_rows-0.2, col=state_color[,2]); | 124 return(state_colors_vector); |
| 80 palette(defpalette); | |
| 81 if (!is.null(output_file_name)) { | |
| 82 dev.off(); | |
| 83 } | |
| 84 return(state_color); | |
| 85 } | 125 } |
| 86 | |
| 87 get_state_color <- function(data_matrix, histone_mark_color) { | |
| 88 range_vector = apply(data_matrix, 1, range); | |
| 89 mm = NULL; | |
| 90 for(i in 1:dim(data_matrix)[1]) { | |
| 91 range_val1 = range_vector[1, i] + 1e-10; | |
| 92 range_val2 = range_vector[2, i]; | |
| 93 mm = rbind(mm, (data_matrix[i,] - range_val1) / (range_val2 - range_val1)); | |
| 94 } | |
| 95 mm = mm^5; | |
| 96 if(dim(mm)[2] > 1) { | |
| 97 mm = mm / (apply(mm, 1, sum) + 1e-10); | |
| 98 } | |
| 99 state_color = mm%*%histone_mark_color; | |
| 100 s = apply(data_matrix, 1, max); | |
| 101 s = (s - min(s)) / (max(s) - min(s) + 1e-10); | |
| 102 state_color = round(255 - (255 - state_color) * s/0.5); | |
| 103 state_color[state_color<0] = 0; | |
| 104 rt = paste(state_color[,1], state_color[,2], state_color[,3], sep=","); | |
| 105 h = t(apply(state_color, 1, function(x){rgb2hsv(x[1], x[2], x[3])})); | |
| 106 h = apply(h, 1, function(x){hsv(x[1], x[2], x[3])}); | |
| 107 rt = cbind(rt, h); | |
| 108 return(rt); | |
| 109 } |
