Mercurial > repos > greg > fast_fiber_tracking
view fast_fiber_tracking.py @ 0:4e3d4331fa58 draft
Uploaded
author | greg |
---|---|
date | Tue, 07 Nov 2017 13:48:48 -0500 |
parents | |
children | 63aa79b5ebd6 |
line wrap: on
line source
#!/usr/bin/env python import argparse import shutil from dipy.data import fetch_sherbrooke_3shell from dipy.data import fetch_stanford_hardi from dipy.data import get_sphere from dipy.data import read_sherbrooke_3shell from dipy.data import read_stanford_hardi from dipy.direction import peaks_from_model from dipy.io.image import save_nifti from dipy.reconst.csdeconv import (ConstrainedSphericalDeconvModel, auto_response) from dipy.reconst.dti import TensorModel from dipy.segment.mask import median_otsu from dipy.tracking.local import LocalTracking, ThresholdTissueClassifier from dipy.tracking.streamline import Streamlines from dipy.tracking.utils import random_seeds_from_mask from dipy.viz import actor, window import numpy as np parser = argparse.ArgumentParser() parser.add_argument('--drmi_dataset', dest='drmi_dataset', help='Input dataset') parser.add_argument('--output_csd_direction_field', dest='output_csd_direction_field', help='Output csd direction field dataset') parser.add_argument('--output_det_streamlines', dest='output_det_streamlines', help='Output det streamlines dataset') parser.add_argument('--output_fa_map', dest='output_fa_map', help='Output fa map dataset') args = parser.parse_args() interactive = False # Get input data. input_dir = args.drmi_dataset if input_dir == 'sherbrooke_3shell': fetch_sherbrooke_3shell() img, gtab = read_sherbrooke_3shell() elif input_dir == 'stanford_hardi': fetch_stanford_hardi() img, gtab = read_stanford_hardi() data = img.get_data() maskdata, mask = median_otsu(data, 3, 1, False, vol_idx=range(10, 50), dilate=2) response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7) csd_model = ConstrainedSphericalDeconvModel(gtab, response) sphere = get_sphere('symmetric724') csd_peaks = peaks_from_model(model=csd_model, data=data, sphere=sphere, mask=mask, relative_peak_threshold=.5, min_separation_angle=25, parallel=True) tensor_model = TensorModel(gtab, fit_method='WLS') tensor_fit = tensor_model.fit(data, mask) fa = tensor_fit.fa tissue_classifier = ThresholdTissueClassifier(fa, 0.1) seeds = random_seeds_from_mask(fa > 0.3, seeds_count=1) ren = window.Renderer() ren.add(actor.peak_slicer(csd_peaks.peak_dirs, csd_peaks.peak_values, colors=None)) window.record(ren, out_path='csd_direction_field.png', size=(900, 900)) shutil.move('csd_direction_field.png', args.output_csd_direction_field) streamline_generator = LocalTracking(csd_peaks, tissue_classifier, seeds, affine=np.eye(4), step_size=0.5) streamlines = Streamlines(streamline_generator) ren.clear() ren.add(actor.line(streamlines)) window.record(ren, out_path='det_streamlines.png', size=(900, 900)) shutil.move('det_streamlines.png', args.output_det_streamlines) save_nifti('fa_map.nii', fa, img.affine) shutil.move('fa_map.nii', args.output_fa_map)