Mercurial > repos > greg > diffusion_signal_reconstruction
view diffusion_signal_reconstruction.py @ 9:dc700deb06c1 draft
Uploaded
author | greg |
---|---|
date | Thu, 30 Nov 2017 08:30:06 -0500 |
parents | 85df19d98cd0 |
children | 7bcc39c8ccfd |
line wrap: on
line source
#!/usr/bin/env python import argparse import os import shutil from dipy.data import fetch_sherbrooke_3shell from dipy.data import fetch_stanford_hardi from dipy.data import get_sphere from dipy.data import read_sherbrooke_3shell from dipy.data import read_stanford_hardi from dipy.reconst import dti from dipy.reconst.dti import color_fa from dipy.reconst.dti import fractional_anisotropy from dipy.segment.mask import median_otsu from dipy.viz import fvtk from matplotlib import pyplot import nibabel import numpy # http://nipy.org/dipy/examples_built/reconst_dti.html#example-reconst-dti parser = argparse.ArgumentParser() parser.add_argument('--input', dest='input', help='Input dataset') parser.add_argument('--input_extra_files_path', dest='input_extra_files_path', help='Input dataset extra files path') parser.add_argument('--output_nifti1_fa', dest='output_nifti1_fa', help='Output fractional anisotropy Nifti1 dataset') parser.add_argument('--output_nifti1_fa_files_path', dest='output_nifti1_fa_files_path', help='Output fractional anisotropy Nifti1 extra files path') parser.add_argument('--output_nifti1_evecs', dest='output_nifti1_evecs', help='Output eigen vectors Nifti1 dataset') parser.add_argument('--output_nifti1_evecs_files_path', dest='output_nifti1_evecs_files_path', help='Output eigen vectors Nifti1 extra files path') parser.add_argument('--output_nifti1_md', dest='output_nifti1_md', help='Output mean diffusivity Nifti1 dataset') parser.add_argument('--output_nifti1_md_files_path', dest='output_nifti1_md_files_path', help='Output mean diffusivity Nifti1 extra files path') parser.add_argument('--output_nifti1_rgb', dest='output_nifti1_rgb', help='Output RGB-map Nifti1 dataset') parser.add_argument('--output_nifti1_rgb_files_path', dest='output_nifti1_rgb_files_path', help='Output RGB-map Nifti1 extra files path') parser.add_argument('--output_png_ellipsoids', dest='output_png_ellipsoids', help='Output ellipsoids PNG dataset') parser.add_argument('--output_png_odfs', dest='output_png_odfs', help='Output orientation distribution functions PNG dataset') parser.add_argument('--output_png_middle_axial_slice', dest='output_png_middle_axial_slice', help='Output middle axial slice PNG dataset') args = parser.parse_args() def move_directory_files(source_dir, destination_dir, copy=False, remove_source_dir=False): source_directory = os.path.abspath(source_dir) destination_directory = os.path.abspath(destination_dir) if not os.path.isdir(destination_directory): os.makedirs(destination_directory) for dir_entry in os.listdir(source_directory): source_entry = os.path.join(source_directory, dir_entry) if copy: shutil.copy(source_entry, destination_directory) else: shutil.move(source_entry, destination_directory) if remove_source_dir: os.rmdir(source_directory) # Get input data. # TODO: do not hard-code 'stanford_hardi' input_dir = 'stanford_hardi' os.mkdir(input_dir) input_dir = args.drmi_dataset for f in os.list_dir(args.input_extra_files_path): shutil.copy(f, input_dir) fetch_stanford_hardi() img, gtab = read_stanford_hardi() data = img.get_data() maskdata, mask = median_otsu(data, 3, 1, True, vol_idx=range(10, 50), dilate=2) axial_middle = data.shape[2] // 2 pyplot.subplot(1, 2, 1).set_axis_off() pyplot.imshow(data[:, :, axial_middle, 0].T, cmap='gray', origin='lower') pyplot.subplot(1, 2, 2).set_axis_off() pyplot.imshow(data[:, :, axial_middle, 10].T, cmap='gray', origin='lower') pyplot.savefig('middle_axial.png', bbox_inches='tight') shutil.move('middle_axial.png', args.output_png_middle_axial_slice) tenmodel = dti.TensorModel(gtab) tenfit = tenmodel.fit(maskdata) fa = fractional_anisotropy(tenfit.evals) fa[numpy.isnan(fa)] = 0 fa_img = nibabel.Nifti1Image(fa.astype(numpy.float32), img.affine) nibabel.save(fa_img, 'output_fa.nii') shutil.move('output_fa.nii', args.output_nifti1_fa) move_directory_files(input_dir, args.output_nifti1_fa_files_path) evecs_img = nibabel.Nifti1Image(tenfit.evecs.astype(numpy.float32), img.affine) nibabel.save(evecs_img, 'output_evecs.nii') shutil.move('output_evecs.nii', args.output_nifti1_evecs) move_directory_files(input_dir, args.output_nifti1_evecs_files_path) md1 = dti.mean_diffusivity(tenfit.evals) nibabel.save(nibabel.Nifti1Image(md1.astype(numpy.float32), img.affine), 'output_md.nii') shutil.move('output_md.nii', args.output_nifti1_md) move_directory_files(input_dir, args.output_nifti1_md_files_path) fa = numpy.clip(fa, 0, 1) rgb = color_fa(fa, tenfit.evecs) nibabel.save(nibabel.Nifti1Image(numpy.array(255 * rgb, 'uint8'), img.affine), 'output_rgb.nii') shutil.move('output_rgb.nii', args.output_nifti1_rgb) move_directory_files(input_dir, args.output_nifti1_rgb_files_path) sphere = get_sphere('symmetric724') ren = fvtk.ren() evals = tenfit.evals[13:43, 44:74, 28:29] evecs = tenfit.evecs[13:43, 44:74, 28:29] cfa = rgb[13:43, 44:74, 28:29] cfa /= cfa.max() fvtk.add(ren, fvtk.tensor(evals, evecs, cfa, sphere)) fvtk.record(ren, n_frames=1, out_path='tensor_ellipsoids.png', size=(600, 600)) shutil.move('tensor_ellipsoids.png', args.output_png_ellipsoids) fvtk.clear(ren) tensor_odfs = tenmodel.fit(data[20:50, 55:85, 38:39]).odf(sphere) fvtk.add(ren, fvtk.sphere_funcs(tensor_odfs, sphere, colormap=None)) fvtk.record(ren, n_frames=1, out_path='tensor_odfs.png', size=(600, 600)) shutil.move('tensor_odfs.png', args.output_png_odfs)