Mercurial > repos > greg > diffusion_signal_reconstruction
comparison diffusion_signal_reconstruction.py @ 12:361bdd5fa8bc draft default tip
Uploaded
author | greg |
---|---|
date | Thu, 30 Nov 2017 09:02:37 -0500 |
parents | bca3ded6d5cc |
children |
comparison
equal
deleted
inserted
replaced
11:bca3ded6d5cc | 12:361bdd5fa8bc |
---|---|
75 fa = fractional_anisotropy(tenfit.evals) | 75 fa = fractional_anisotropy(tenfit.evals) |
76 fa[numpy.isnan(fa)] = 0 | 76 fa[numpy.isnan(fa)] = 0 |
77 fa_img = nibabel.Nifti1Image(fa.astype(numpy.float32), img.affine) | 77 fa_img = nibabel.Nifti1Image(fa.astype(numpy.float32), img.affine) |
78 nibabel.save(fa_img, 'output_fa.nii') | 78 nibabel.save(fa_img, 'output_fa.nii') |
79 shutil.move('output_fa.nii', args.output_nifti1_fa) | 79 shutil.move('output_fa.nii', args.output_nifti1_fa) |
80 move_directory_files(input_dir, args.output_nifti1_fa_files_path) | 80 move_directory_files(input_dir, args.output_nifti1_fa_files_path, copy=True) |
81 | 81 |
82 evecs_img = nibabel.Nifti1Image(tenfit.evecs.astype(numpy.float32), img.affine) | 82 evecs_img = nibabel.Nifti1Image(tenfit.evecs.astype(numpy.float32), img.affine) |
83 nibabel.save(evecs_img, 'output_evecs.nii') | 83 nibabel.save(evecs_img, 'output_evecs.nii') |
84 shutil.move('output_evecs.nii', args.output_nifti1_evecs) | 84 shutil.move('output_evecs.nii', args.output_nifti1_evecs) |
85 move_directory_files(input_dir, args.output_nifti1_evecs_files_path) | 85 move_directory_files(input_dir, args.output_nifti1_evecs_files_path, copy=True) |
86 | 86 |
87 md1 = dti.mean_diffusivity(tenfit.evals) | 87 md1 = dti.mean_diffusivity(tenfit.evals) |
88 nibabel.save(nibabel.Nifti1Image(md1.astype(numpy.float32), img.affine), 'output_md.nii') | 88 nibabel.save(nibabel.Nifti1Image(md1.astype(numpy.float32), img.affine), 'output_md.nii') |
89 shutil.move('output_md.nii', args.output_nifti1_md) | 89 shutil.move('output_md.nii', args.output_nifti1_md) |
90 move_directory_files(input_dir, args.output_nifti1_md_files_path) | 90 move_directory_files(input_dir, args.output_nifti1_md_files_path, copy=True) |
91 | 91 |
92 fa = numpy.clip(fa, 0, 1) | 92 fa = numpy.clip(fa, 0, 1) |
93 rgb = color_fa(fa, tenfit.evecs) | 93 rgb = color_fa(fa, tenfit.evecs) |
94 nibabel.save(nibabel.Nifti1Image(numpy.array(255 * rgb, 'uint8'), img.affine), 'output_rgb.nii') | 94 nibabel.save(nibabel.Nifti1Image(numpy.array(255 * rgb, 'uint8'), img.affine), 'output_rgb.nii') |
95 shutil.move('output_rgb.nii', args.output_nifti1_rgb) | 95 shutil.move('output_rgb.nii', args.output_nifti1_rgb) |
96 move_directory_files(input_dir, args.output_nifti1_rgb_files_path) | 96 move_directory_files(input_dir, args.output_nifti1_rgb_files_path, copy=True) |
97 | 97 |
98 sphere = get_sphere('symmetric724') | 98 sphere = get_sphere('symmetric724') |
99 ren = fvtk.ren() | 99 ren = fvtk.ren() |
100 | 100 |
101 evals = tenfit.evals[13:43, 44:74, 28:29] | 101 evals = tenfit.evals[13:43, 44:74, 28:29] |