# HG changeset patch # User greg # Date 1511980995 18000 # Node ID 1f1fdfe9ac4ddf3502ec8bbc8461e78cdbe302da # Parent 2d06191d7820ebec90e6bf0aa34bfa747ec998ae Uploaded diff -r 2d06191d7820 -r 1f1fdfe9ac4d create_streamlines.py --- a/create_streamlines.py Wed Nov 29 13:43:09 2017 -0500 +++ b/create_streamlines.py Wed Nov 29 13:43:15 2017 -0500 @@ -17,9 +17,6 @@ parser = argparse.ArgumentParser() parser.add_argument('--drmi_dataset', dest='drmi_dataset', help='Input dataset') -parser.add_argument('--output_corpuscallosum_axial', dest='output_corpuscallosum_axial', help='Output corpuscallosum axial dataset') -parser.add_argument('--output_corpuscallosum_sagittal', dest='output_corpuscallosum_sagittal', help='Output corpuscallosum sagittal dataset') -parser.add_argument('--output_connectivity', dest='output_connectivity', help='Output connectivity dataset') parser.add_argument('--output_superiorfrontal_nifti', dest='output_superiorfrontal_nifti', help='Output superiorfrontal nifti1 dataset') parser.add_argument('--output_trackvis_header', dest='output_trackvis_header', help='Output superiorfrontal track visualization header dataset') @@ -30,9 +27,9 @@ labels = labels_img.get_data() # For possible later use: if args.drmi_dataset == 'stanford_t1': -fetch_stanford_t1() -t1 = read_stanford_t1() -t1_data = t1.get_data() +#fetch_stanford_t1() +#t1 = read_stanford_t1() +#t1_data = t1.get_data() white_matter = (labels == 1) | (labels == 2) csamodel = shm.CsaOdfModel(gtab, 6) csapeaks = peaks.peaks_from_model(model=csamodel, data=data, sphere=peaks.default_sphere, relative_peak_threshold=.8, min_separation_angle=45, mask=white_matter) @@ -43,35 +40,35 @@ cc_slice = labels == 2 cc_streamlines = utils.target(streamlines, cc_slice, affine=affine) cc_streamlines = list(cc_streamlines) -other_streamlines = utils.target(streamlines, cc_slice, affine=affine, include=False) -other_streamlines = list(other_streamlines) -assert len(other_streamlines) + len(cc_streamlines) == len(streamlines) -# Make display objects -color = line_colors(cc_streamlines) -cc_streamlines_actor = fvtk.line(cc_streamlines, line_colors(cc_streamlines)) -cc_ROI_actor = fvtk.contour(cc_slice, levels=[1], colors=[(1., 1., 0.)], opacities=[1.]) -vol_actor = fvtk.slicer(t1_data) -vol_actor.display(40, None, None) -vol_actor2 = vol_actor.copy() -vol_actor2.display(None, None, 35) -# Add display objects to canvas -r = fvtk.ren() -fvtk.add(r, vol_actor) -fvtk.add(r, vol_actor2) -fvtk.add(r, cc_streamlines_actor) -fvtk.add(r, cc_ROI_actor) -# Save figures -fvtk.record(r, n_frames=1, out_path="corpuscallosum_axial.png", size=(800, 800)) -shutil.move("corpuscallosum_axial.png", args.output_corpuscallosum_axial) -fvtk.camera(r, [-1, 0, 0], [0, 0, 0], viewup=[0, 0, 1]) -fvtk.record(r, n_frames=1, out_path="corpuscallosum_sagittal.png", size=(800, 800)) -shutil.move("corpuscallosum_sagittal.png", args.output_corpuscallosum_sagittal) +#other_streamlines = utils.target(streamlines, cc_slice, affine=affine, include=False) +#other_streamlines = list(other_streamlines) +#assert len(other_streamlines) + len(cc_streamlines) == len(streamlines) +## Make display objects +#color = line_colors(cc_streamlines) +#cc_streamlines_actor = fvtk.line(cc_streamlines, line_colors(cc_streamlines)) +#cc_ROI_actor = fvtk.contour(cc_slice, levels=[1], colors=[(1., 1., 0.)], opacities=[1.]) +#vol_actor = fvtk.slicer(t1_data) +#vol_actor.display(40, None, None) +#vol_actor2 = vol_actor.copy() +#vol_actor2.display(None, None, 35) +## Add display objects to canvas +#r = fvtk.ren() +#fvtk.add(r, vol_actor) +#fvtk.add(r, vol_actor2) +#fvtk.add(r, cc_streamlines_actor) +#fvtk.add(r, cc_ROI_actor) +## Save figures +#fvtk.record(r, n_frames=1, out_path="corpuscallosum_axial.png", size=(800, 800)) +#shutil.move("corpuscallosum_axial.png", args.output_corpuscallosum_axial) +#fvtk.camera(r, [-1, 0, 0], [0, 0, 0], viewup=[0, 0, 1]) +#fvtk.record(r, n_frames=1, out_path="corpuscallosum_sagittal.png", size=(800, 800)) +#shutil.move("corpuscallosum_sagittal.png", args.output_corpuscallosum_sagittal) M, grouping = utils.connectivity_matrix(cc_streamlines, labels, affine=affine, return_mapping=True, mapping_as_streamlines=True) -M[:3, :] = 0 -M[:, :3] = 0 -plt.imshow(np.log1p(M), interpolation='nearest') -plt.savefig("connectivity.png") -shutil.move("connectivity.png", args.output_connectivity) +#M[:3, :] = 0 +#M[:, :3] = 0 +#plt.imshow(np.log1p(M), interpolation='nearest') +#plt.savefig("connectivity.png") +#shutil.move("connectivity.png", args.output_connectivity) lr_superiorfrontal_track = grouping[11, 54] shape = labels.shape dm = utils.density_map(lr_superiorfrontal_track, shape, affine=affine)