Mercurial > repos > greg > create_streamlines
view create_streamlines.py @ 0:1c5508f627ec draft
Uploaded
author | greg |
---|---|
date | Tue, 28 Nov 2017 14:15:52 -0500 |
parents | |
children | 51263bfe7b2c |
line wrap: on
line source
#!/usr/bin/env python import argparse import shutil from dipy.data import fetch_stanford_t1, read_stanford_labels, read_stanford_t1 from dipy.reconst import peaks, shm from dipy.tracking import utils from dipy.tracking.eudx import EuDX from dipy.viz import fvtk from dipy.viz.colormap import line_colors import matplotlib.pyplot as plt import nibabel as nib import numpy as np parser = argparse.ArgumentParser() parser.add_argument('--drmi_dataset', dest='drmi_dataset', help='Input dataset') parser.add_argument('--output_corpuscallosum_axial', dest='output_corpuscallosum_axial', help='Output corpuscallosum axial dataset') parser.add_argument('--output_corpuscallosum_sagittal', dest='output_corpuscallosum_sagittal', help='Output corpuscallosum sagittal dataset') parser.add_argument('--output_connectivity', dest='output_connectivity', help='Output connectivity dataset') parser.add_argument('--output_superiorfrontal_nifti', dest='output_superiorfrontal_nifti', help='Output superiorfrontal nifti1 dataset') parser.add_argument('--output_trackvis_header', dest='output_trackvis_header', help='Output superiorfrontal track visualization header dataset') args = parser.parse_args() hardi_img, gtab, labels_img = read_stanford_labels() data = hardi_img.get_data() labels = labels_img.get_data() if args.drmi_dataset == 'stanford_t1': fetch_stanford_t1() t1 = read_stanford_t1() t1_data = t1.get_data() white_matter = (labels == 1) | (labels == 2) csamodel = shm.CsaOdfModel(gtab, 6) csapeaks = peaks.peaks_from_model(model=csamodel, data=data, sphere=peaks.default_sphere, relative_peak_threshold=.8, min_separation_angle=45, mask=white_matter) seeds = utils.seeds_from_mask(white_matter, density=2) streamline_generator = EuDX(csapeaks.peak_values, csapeaks.peak_indices, odf_vertices=peaks.default_sphere.vertices, a_low=.05, step_sz=.5, seeds=seeds) affine = streamline_generator.affine streamlines = list(streamline_generator) cc_slice = labels == 2 cc_streamlines = utils.target(streamlines, cc_slice, affine=affine) cc_streamlines = list(cc_streamlines) other_streamlines = utils.target(streamlines, cc_slice, affine=affine, include=False) other_streamlines = list(other_streamlines) assert len(other_streamlines) + len(cc_streamlines) == len(streamlines) # Make display objects color = line_colors(cc_streamlines) cc_streamlines_actor = fvtk.line(cc_streamlines, line_colors(cc_streamlines)) cc_ROI_actor = fvtk.contour(cc_slice, levels=[1], colors=[(1., 1., 0.)], opacities=[1.]) vol_actor = fvtk.slicer(t1_data) vol_actor.display(40, None, None) vol_actor2 = vol_actor.copy() vol_actor2.display(None, None, 35) # Add display objects to canvas r = fvtk.ren() fvtk.add(r, vol_actor) fvtk.add(r, vol_actor2) fvtk.add(r, cc_streamlines_actor) fvtk.add(r, cc_ROI_actor) # Save figures fvtk.record(r, n_frames=1, out_path=args.output_corpuscallosum_axial, size=(800, 800)) fvtk.camera(r, [-1, 0, 0], [0, 0, 0], viewup=[0, 0, 1]) fvtk.record(r, n_frames=1, out_path=args.output_corpuscallosum_sagittal, size=(800, 800)) M, grouping = utils.connectivity_matrix(cc_streamlines, labels, affine=affine, return_mapping=True, mapping_as_streamlines=True) M[:3, :] = 0 M[:, :3] = 0 plt.imshow(np.log1p(M), interpolation='nearest') plt.savefig(args.output_connectivity) lr_superiorfrontal_track = grouping[11, 54] shape = labels.shape dm = utils.density_map(lr_superiorfrontal_track, shape, affine=affine) # Save density map dm_img = nib.Nifti1Image(dm.astype("int16"), hardi_img.affine) dm_img.to_filename("lr-superiorfrontal-dm.nii") shutil.move('lr-superiorfrontal-dm.nii', args.output_superiorfrontal_nifti) # Make a trackvis header so we can save streamlines voxel_size = labels_img.header.get_zooms() trackvis_header = nib.trackvis.empty_header() trackvis_header['voxel_size'] = voxel_size trackvis_header['dim'] = shape trackvis_header['voxel_order'] = "RAS" # Move streamlines to "trackvis space" trackvis_point_space = utils.affine_for_trackvis(voxel_size) lr_sf_trk = utils.move_streamlines(lr_superiorfrontal_track, trackvis_point_space, input_space=affine) lr_sf_trk = list(lr_sf_trk) # Save streamlines for_save = [(sl, None, None) for sl in lr_sf_trk] nib.trackvis.write("lr-superiorfrontal.trk", for_save, trackvis_header) shutil.move('lr-superiorfrontal.trk', args.output_trackvis_header) dm_trackvis = utils.density_map(lr_sf_trk, shape, affine=trackvis_point_space) assert np.all(dm == dm_trackvis)