Mercurial > repos > greg > bmsb
view bmsb.R @ 13:860730afa679 draft
Uploaded
author | greg |
---|---|
date | Tue, 16 Aug 2016 10:03:49 -0400 |
parents | 99a386ac1f5b |
children | 5ba47f694b0a |
line wrap: on
line source
#!/usr/bin/env Rscript #suppressPackageStartupMessages(library("optparse")) #suppressPackageStartupMessages(library("rjson")) options_list <- list( make_option(c("-s", "--save_log"), action="store_true", default=FALSE, help="Save R logs"), make_option(c("-m", "--output_r_log"), action="store", help="Output dataset for R logs"), make_option(c("-o", "--output"), action="store", help="Output dataset") ) parser <- OptionParser(usage="%prog [options] file", options_list) args <- parse_args(parser, positional_arguments=TRUE) opt <- args$options daylength = function(L){ # from Forsythe 1995 p = 0.8333 dl <- NULL for (i in 1:365) { theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (i - 186))) phi <- asin(0.39795 * cos(theta)) dl[i] <- 24 - 24/pi * acos((sin(p * pi/180) + sin(L * pi/180) * sin(phi))/(cos(L * pi/180) * cos(phi))) } # return a vector of daylength in 365 days dl } # source("daylength.R") hourtemp = function(L,date){ # L = 37.5 specify this in main program # base development threshold for BMSB threshold <- 12.7 # threshold2 <- threshold/24 degree hour accumulation #expdata <- tempdata[1:365,11:13] # Use daily max, min, mean # daily minimum dnp <- expdata[date,2] # daily maximum dxp <- expdata[date,3] dmean <- 0.5 * (dnp + dxp) #if (dmean>0) { #dnp <- dnp - k1 * dmean #dxp <- dxp + k2 * dmean #} else { #dnp <- dnp + k1 * dmean #dxp <- dxp - k2 * dmean #} dd <- 0 # initialize degree day accumulation if (dxp<threshold) { dd <- 0 } else { # extract daylength data for entire year dlprofile <- daylength(L) # initialize hourly temperature T <- NULL #initialize degree hour vector dh <- NULL # calculate daylength in given date # date <- 200 y <- dlprofile[date] # night length z <- 24 - y # lag coefficient a <- 1.86 # night coefficient b <- 2.20 #import raw data set #tempdata <- read.csv("tempdata.csv") # Should be outside function otherwise its redundant # sunrise time risetime <- 12 - y/2 # sunset time settime <- 12 + y/2 ts <- (dxp - dnp) * sin(pi * (settime-5)/(y + 2 * a)) + dnp for (i in 1:24) { if (i > risetime && i < settime) { # number of hours after Tmin until sunset m <- i - 5 T[i] = (dxp - dnp) * sin(pi * m/(y + 2 * a)) + dnp if (T[i]<8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } else if (i>settime) { n <- i - settime T[i] = dnp + (ts - dnp) * exp(-b * n/z) if (T[i]<8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } else { n <- i + 24 - settime T[i] = dnp + (ts - dnp) * exp(-b * n / z) if (T[i]<8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } } dd <- sum(dh) / 24 } return = c(dmean, dd) return } mortality.egg = function(temperature) { if (temperature < 12.7) { mort.prob = 1 } else { # 100% mortality if <12.7 mort.prob = 0.8 - temperature / 40 if (mort.prob<0) { mort.prob = 0.01 } } return = mort.prob return } mortality.nymph = function(temperature) { if (temperature<12.7) { mort.prob = 0.03 } else { # at low temperature mort.prob = -temperature * 0.0008 + 0.03 } return = mort.prob return } mortality.adult = function(temperature) { if (temperature < 12.7) { mort.prob = 0.002 } else { mort.prob = -temperature * 0.0005 + 0.02 } return = mort.prob return } # model initialization # TODO: add tool params for the following options. # start with 1000 individuals n <- 1000 # Generation, Stage, DD, T, Diapause vec.ini <- c(0,3,0,0,0) # overwintering, previttelogenic, DD = 0, T = 0, no-diapause vec.mat <- rep(vec.ini,n) # complete matrix for the population vec.mat <- t(matrix(vec.mat, nrow = 5)) # latitude for Asheville NC L <- 35.58 # complete photoperiod profile in a year, requires daylength function ph.p <- daylength(L) # load temperature data@location/year load("asheville2014.Rdat") # time series of population size tot.pop <- NULL # gen.0 pop size gen0.pop <- rep(0, 365) gen1.pop <- rep(0, 365) gen2.pop <- rep(0, 365) # aggregate S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, 365) g0.adult <- g1.adult <- g2.adult <- rep(0, 365) # birth death adults N.newborn <- N.death <- N.adult <- rep(0, 365) # degree-day accumulation dd.day <- rep(0, 365) # start tick ptm <- proc.time() for (n.sim in 1:1000) { # loop through 1000 simulations for (day in 1:365) { # loop through 365 day/yr photoperiod <- ph.p[day] # photoperiod in the day temp.profile <- hourtemp(L,day) # temperature profile mean.temp <- temp.profile[1] # mean temp dd.temp <- temp.profile[2] # degree-day dd.day[day] <- dd.temp death.vec <- NULL # trash bin for death birth.vec <- NULL # record new born for (i in 1:n) { # loop through all individual vec.ind <- vec.mat[i,] # find individual record # first of all, still alive? if (vec.ind[2] == 0) { # egg death.prob = mortality.egg(mean.temp) } else if (vec.ind[2] == 1 | vec.ind[2] == 2) { # nymph death.prob = mortality.nymph(mean.temp) } else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) { # for adult death.prob = mortality.adult(mean.temp) } u.d <- runif(1) if (u.d<death.prob) { death.vec <- c(death.vec,i) } else { # aggregrate index of dead bug # event 1 end of diapause if (vec.ind[1] == 0 && vec.ind[2] == 3) { # overwintering adult (previttelogenic) if (photoperiod>13.5 && vec.ind[3] > 68 && day < 180) { # add 68C to become fully reproductively matured # transfer to vittelogenic vec.ind <- c(0,4,0,0,0) vec.mat[i,] <- vec.ind } else { # add to DD vec.ind[3] <- vec.ind[3] + dd.temp vec.ind[4] <- vec.ind[4] + 1 # add 1 day in current stage vec.mat[i,] <- vec.ind } } if (vec.ind[1]!=0 && vec.ind[2] == 3) { # NOT overwintering adult (previttelogenic) current.gen <- vec.ind[1] if (vec.ind[3]>68) { # add 68C to become fully reproductively matured # transfer to vittelogenic vec.ind <- c(current.gen,4,0,0,0) vec.mat[i,] <- vec.ind } else { # add to DD vec.ind[3] <- vec.ind[3] + dd.temp # add 1 day in current stage vec.ind[4] <- vec.ind[4] + 1 vec.mat[i,] <- vec.ind } } # event 2 oviposition -- where population dynamics comes from # vittelogenic stage, overwintering generation if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp>10) { if (vec.ind[4] == 0) { # just turned in vittelogenic stage n.birth = round(runif(1,10,20)) } else { p.birth = 1/4/75 # prob of birth u1 <- runif(1) if (u1<p.birth) { n.birth = n.birth } } # add to DD vec.ind[3] <- vec.ind[3] + dd.temp # add 1 day in current stage vec.ind[4] <- vec.ind[4] + 1 vec.mat[i,] <- vec.ind if (n.birth>0) { # add new birth -- might be in different generations # generation + 1 new.gen <- vec.ind[1] + 1 # egg profile new.ind <- c(new.gen,0,0,0,0) new.vec <- rep(new.ind,n.birth) # update batch of egg profile new.vec <- t(matrix(new.vec,nrow = 5)) # group with total eggs laid in that day birth.vec <- rbind(birth.vec,new.vec) } } # event 2 oviposition -- for gen 1. if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp>12.5 && day<222) { # vittelogenic stage, 1st generation if (vec.ind[4] == 0) { # just turned in vittelogenic stage n.birth = round(runif(1,10,20)) } else { p.birth = 1/4/75 u1 <- runif(1) if (u1<p.birth) { n.birth = n.birth } } # add to DD vec.ind[3] <- vec.ind[3] + dd.temp # add 1 day in current stage vec.ind[4] <- vec.ind[4] + 1 vec.mat[i,] <- vec.ind if (n.birth>0) { # add new birth -- might be in different generations # generation + 1 new.gen <- vec.ind[1] + 1 # egg profile new.ind <- c(new.gen,0,0,0,0) new.vec <- rep(new.ind,n.birth) # update batch of egg profile new.vec <- t(matrix(new.vec,nrow = 5)) # group with total eggs laid in that day birth.vec <- rbind(birth.vec,new.vec) } } # event 3 development (with diapause determination) # event 3.1 egg development to young nymph (vec.ind[2] = 0 -> egg) # egg stage if (vec.ind[2] == 0) { # add to DD vec.ind[3] <- vec.ind[3] + dd.temp # from egg to young nymph if (vec.ind[3] >= 53.30 && -0.9843 * dd.temp + 33.438>0) { current.gen <- vec.ind[1] # transfer to young nym stage vec.ind <- c(current.gen,1,0,0,0) } else { # add 1 day in current stage vec.ind[4] <- vec.ind[4] + 1 } vec.mat[i,] <- vec.ind } # event 3.2 young nymph to old nymph (vec.ind[2] = 1 -> young nymph: determines diapause) # young nymph stage if (vec.ind[2] == 1) { # add to DD vec.ind[3] <- vec.ind[3] + dd.temp # from young to old nymph if (vec.ind[3] >= 537/2 && -0.45 * dd.temp + 18>0) { current.gen <- vec.ind[1] # transfer to old nym stage vec.ind <- c(current.gen,2,0,0,0) # prepare for diapausing if (photoperiod<13.5 && day > 180) { vec.ind[5] <- 1 } } else { # add 1 day in current stage vec.ind[4] <- vec.ind[4] + 1 } vec.mat[i,] <- vec.ind } # event 3.3 old nymph to adult: previttelogenic or diapausing? # old nymph stage if (vec.ind[2] == 2) { # add to DD vec.ind[3] <- vec.ind[3] + dd.temp # from old to adult if (vec.ind[3] >= 537/2 && -0.50 * dd.temp + 22>0) { current.gen <- vec.ind[1] # non-diapausing adult -- previttelogenic if (vec.ind[5] == 0) { vec.ind <- c(current.gen,3,0,0,0) # diapausing } else { vec.ind <- c(current.gen,5,0,0,1) } } else { # add 1 day in current stage vec.ind[4] <- vec.ind[4] + 1 } vec.mat[i,] <- vec.ind } # event 4 growing of diapausing adult (unimportant, but still necessary)## if (vec.ind[2] == 5) { vec.ind[3] <- vec.ind[3] + dd.temp vec.ind[4] <- vec.ind[4] + 1 vec.mat[i,] <- vec.ind } } # else if it is still alive } # end of the individual bug loop # find how many died n.death <- length(death.vec) if (n.death>0) { vec.mat <- vec.mat[-death.vec, ] } # remove record of dead # find how many new born n.newborn <- length(birth.vec[,1]) vec.mat <- rbind(vec.mat,birth.vec) # update population size for the next day n <- n-n.death + n.newborn # aggregate results by day tot.pop <- c(tot.pop,n) # egg s0 <- sum(vec.mat[,2] == 0) # young nymph s1 <- sum(vec.mat[,2] == 1) # old nymph s2 <- sum(vec.mat[,2] == 2) # previtellogenic s3 <- sum(vec.mat[,2] == 3) # vitellogenic s4 <- sum(vec.mat[,2] == 4) # diapausing s5 <- sum(vec.mat[,2] == 5) # overwintering adult gen0 <- sum(vec.mat[,1] == 0) # first generation gen1 <- sum(vec.mat[,1] == 1) # second generation gen2 <- sum(vec.mat[,1] == 2) # sum of all adults n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5) # gen.0 pop size gen0.pop[day] <- gen0 gen1.pop[day] <- gen1 gen2.pop[day] <- gen2 S0[day] <- s0 S1[day] <- s1 S2[day] <- s2 S3[day] <- s3 S4[day] <- s4 S5[day] <- s5 g0.adult[day] <- sum(vec.mat[,1] == 0) g1.adult[day] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5)) g2.adult[day] <- sum((vec.mat[,1] == 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5)) N.newborn[day] <- n.newborn N.death[day] <- n.death N.adult[day] <- n.adult } #print(n.sim) } proc.time() - ptm dd.cum <- cumsum(dd.day) save(dd.day, dd.cum, S0, S1, S2, S3, S4, S5, N.newborn, N.death, N.adult, tot.pop, gen0.pop, gen1.pop, gen2.pop, g0.adult, g1.adult, g2.adult, file=opt$output)