Mercurial > repos > greg > bmsb
diff bmsb.R @ 25:08cb8c7228c2 draft
Uploaded
author | greg |
---|---|
date | Fri, 19 Aug 2016 14:38:51 -0400 |
parents | a5f80d53feee |
children | 641c4954c76c |
line wrap: on
line diff
--- a/bmsb.R Fri Aug 19 14:38:43 2016 -0400 +++ b/bmsb.R Fri Aug 19 14:38:51 2016 -0400 @@ -1,9 +1,9 @@ #!/usr/bin/env Rscript -options_list <- list( - make_option(c("-i", "--input_temperatures"), action="store", help="Input temperatures csv file"), - make_option(c("-s", "--save_log"), action="store_true", default=FALSE, help="Save R logs"), - make_option(c("-m", "--output_r_log"), action="store", help="Output dataset for R logs"), +suppressPackageStartupMessages(library("optparse")) + +option_list <- list( + make_option(c("-i", "--input"), action="store", help="Input dataset") make_option(c("-o", "--output"), action="store", help="Output dataset") ) @@ -11,14 +11,341 @@ args <- parse_args(parser, positional_arguments=TRUE) opt <- args$options +######################################### +daylength=function(L){ +# from Forsythe 1995 +p=0.8333 +dl<-NULL +for (i in 1:365) { +theta<-0.2163108+2*atan(0.9671396*tan(0.00860*(i-186))) +phi<-asin(0.39795*cos(theta)) +dl[i]<-24-24/pi*acos((sin(p*pi/180)+sin(L*pi/180)*sin(phi))/(cos(L*pi/180)*cos(phi))) +} +dl # return a vector of daylength in 365 days +} +######################################### -if (opt$save_log) { - rlogf <- file(opt$output_r_log, open="wt") -} else { - # Direct R messaging to a temporary file. - rlogf <- file("tmpRLog", open="wt") +######################################### +# source("daylength.R") +hourtemp=function(L,date){ +# L=37.5 specify this in main program +threshold<-12.7 # base development threshold for BMSB +# threshold2<-threshold/24 degree hour accumulation +#expdata<-tempdata[1:365,11:13] # Use daily max, min, mean +dnp<-expdata[date,2] # daily minimum +dxp<-expdata[date,3] # daily maximum +dmean<-0.5*(dnp+dxp) +#if (dmean>0) { +#dnp<-dnp-k1*dmean +#dxp<-dxp+k2*dmean +#} else { +#dnp<-dnp+k1*dmean +#dxp<-dxp-k2*dmean +#} +dd<-0 # initialize degree day accumulation + +if (dxp<threshold) {dd<-0} else +{ +dlprofile<-daylength(L) # extract daylength data for entire year +T<-NULL # initialize hourly temperature +dh<-NULL #initialize degree hour vector +# date<-200 +y<-dlprofile[date] # calculate daylength in given date +z<-24-y # night length +a<-1.86 # lag coefficient +b<-2.20 # night coefficient +#tempdata<-read.csv("tempdata.csv") #import raw data set +# Should be outside function otherwise its redundant +risetime<-12-y/2 # sunrise time +settime<-12+y/2 # sunset time +ts<-(dxp-dnp)*sin(pi*(settime-5)/(y+2*a))+dnp +for (i in 1:24){ + if (i>risetime && i<settime) { + m<-i-5 # number of hours after Tmin until sunset + T[i]=(dxp-dnp)*sin(pi*m/(y+2*a))+dnp + if (T[i]<8.4) {dh[i]<-0} else + {dh[i]<-T[i]-8.4} + } else + if (i>settime){ + n<-i-settime + T[i]=dnp+(ts-dnp)*exp(-b*n/z) + if (T[i]<8.4) {dh[i]<-0} else + {dh[i]<-T[i]-8.4} + } else + { + n<-i+24-settime + T[i]=dnp+(ts-dnp)*exp(-b*n/z) + if (T[i]<8.4) {dh[i]<-0} else + {dh[i]<-T[i]-8.4} + } +} +dd<-sum(dh)/24 +} +return=c(dmean,dd) +return +} +######################################### + + +######################################### +mortality.egg=function(temperature){ +if (temperature<12.7) { + mort.prob=0.8} else +{mort.prob=0.8-temperature/40 +if (mort.prob<0) {mort.prob=0.01} +} +return=mort.prob +return +} +######################################### + + +######################################### +mortality.nymph=function(temperature){ +if (temperature<12.7) { + mort.prob=0.03} else +{mort.prob=temperature*0.0008+0.03} +return=mort.prob +return +} +######################################### + +######################################### +mortality.adult=function(temperature){ +if (temperature<12.7) { + mort.prob=0.002} else +{mort.prob=temperature*0.0005+0.02} +return=mort.prob +return +} +######################################### + +# model initialization +# setwd(“/home/lunarmouse/Dropbox/Nelson's project/") +# PLEASE CHANGE TO YOUR OWN DIRECTORY!!! +# PLEASE LOAD BSMB FUNCTIONS FIRST!!! + +n<-1000 # start with 1000 individuals +# Generation, Stage, DD, T, Diapause +vec.ini<-c(0,3,0,0,0) +# overwintering, previttelogenic,DD=0, T=0, no-diapause +vec.mat<-rep(vec.ini,n) +vec.mat<-t(matrix(vec.mat,nrow=5)) # complete matrix for the population +L<-35.58 # latitude for Asheville NC +ph.p<-daylength(L) # complete photoperiod profile in a year, requires daylength function + +#load("asheville2014.Rdat") # load temperature data@location/year +load(opt$input) # load temperature data@location/year +tot.pop<-NULL # time series of population size +gen0.pop<-rep(0,365) # gen.0 pop size +gen1.pop<-rep(0,365) +gen2.pop<-rep(0,365) +S0<-S1<-S2<-S3<-S4<-S5<-rep(0,365) +g0.adult<-g1.adult<-g2.adult<-rep(0,365) +N.newborn<-N.death<-N.adult<-rep(0,365) +dd.day<-rep(0,365) + +ptm <- proc.time() # start tick + +for (day in 1:365) { # all the day +photoperiod<-ph.p[day] # photoperiod in the day +temp.profile<-hourtemp(L,day) +mean.temp<-temp.profile[1] +dd.temp<-temp.profile[2] +dd.day[day]<-dd.temp +death.vec<-NULL # trash bin for death +birth.vec<-NULL # new born +#n<-length(vec.mat[,1]) # population size at previous day + + for (i in 1:n) { # all individual + vec.ind<-vec.mat[i,] # find individual record + +# first of all, still alive? +if(vec.ind[2]==0){ # egg +death.prob=mortality.egg(mean.temp) + } else if (vec.ind[2]==1 | vec.ind[2]==2) { +death.prob=mortality.nymph(mean.temp) +} else if (vec.ind[2]==3 | vec.ind[2]==4 | vec.ind[2]==5) { # for adult + if (day<120 && day>270) {death.prob=0.33*mortality.adult(mean.temp) + } else { +death.prob=mortality.adult(mean.temp)} # reduce adult mortality after fall equinox } -sink(file=rlogf, type=c("output", "message"), append=FALSE, split=FALSE) + + +#(or dependent on temperature and life stage?) +u.d<-runif(1) +if (u.d<death.prob) { +death.vec<-c(death.vec,i)} else # aggregrate index of dead bug + { +# event 1 end of diapause +if (vec.ind[1]==0 && vec.ind[2]==3) { # overwintering adult (previttelogenic) + if (photoperiod>13.5 && vec.ind[3]>77 && day<180) { # add 77C to become fully reproductively matured + vec.ind<-c(0,4,0,0,0) # transfer to vittelogenic + vec.mat[i,]<-vec.ind + + } else { + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + vec.mat[i,]<-vec.ind + } +} + +if (vec.ind[1]!=0 && vec.ind[2]==3) { # NOT overwintering adult (previttelogenic) + current.gen<-vec.ind[1] + if (vec.ind[3]>77) { # add 77C to become fully reproductively matured + vec.ind<-c(current.gen,4,0,0,0) # transfer to vittelogenic + vec.mat[i,]<-vec.ind + } else { + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + vec.mat[i,]<-vec.ind + } +} + + + +# event 2 oviposition -- where population dynamics comes from +if (vec.ind[2]==4 && vec.ind[1]==0 && mean.temp>10) { # vittelogenic stage, overwintering generation + if (vec.ind[4]==0) { # just turned in vittelogenic stage + n.birth=round(runif(1,2,8))} else{ + p.birth=0.01 # daily probability of birth + u1<-runif(1) + if (u1<p.birth) {n.birth=round(runif(1,2,8))} + } + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + vec.mat[i,]<-vec.ind + if (n.birth>0) { # add new birth -- might be in different generations + new.gen<-vec.ind[1]+1 # generation +1 + new.ind<-c(new.gen,0,0,0,0) # egg profile + new.vec<-rep(new.ind,n.birth) + new.vec<-t(matrix(new.vec,nrow=5)) # update batch of egg profile + birth.vec<-rbind(birth.vec,new.vec) # group with total eggs laid in that day + } +} + +# event 2 oviposition -- for gen 1. +if (vec.ind[2]==4 && vec.ind[1]==1 && mean.temp>12.5 && day<222) { # vittelogenic stage, 1st generation + if (vec.ind[4]==0) { # just turned in vittelogenic stage + n.birth=round(runif(1,2,8))} else{ + p.birth=0.01 # daily probability of birth + u1<-runif(1) + if (u1<p.birth) {n.birth=round(runif(1,2,8))} + } + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + vec.mat[i,]<-vec.ind + if (n.birth>0) { # add new birth -- might be in different generations + new.gen<-vec.ind[1]+1 # generation +1 + new.ind<-c(new.gen,0,0,0,0) # egg profile + new.vec<-rep(new.ind,n.birth) + new.vec<-t(matrix(new.vec,nrow=5)) # update batch of egg profile + birth.vec<-rbind(birth.vec,new.vec) # group with total eggs laid in that day + } +} + + -tempdata <- read.csv(opt$input_temperatures) -save(tempdata, file=opt$output) +# event 3 development (with diapause determination) + # event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg) +if (vec.ind[2]==0) { # egg stage + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + if (vec.ind[3]>=68) { # from egg to young nymph, DD requirement met + current.gen<-vec.ind[1] + vec.ind<-c(current.gen,1,0,0,0) # transfer to young nym stage + } else { + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + } + vec.mat[i,]<-vec.ind +} + + # event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause) +if (vec.ind[2]==1) { # young nymph stage + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + if (vec.ind[3]>=250) { # from young to old nymph, DD requirement met + current.gen<-vec.ind[1] + vec.ind<-c(current.gen,2,0,0,0) # transfer to old nym stage + if (photoperiod<13.5 && day > 180) {vec.ind[5]<-1} # prepare for diapausing + } else { + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + } + vec.mat[i,]<-vec.ind +} + + + # event 3.3 old nymph to adult: previttelogenic or diapausing? +if (vec.ind[2]==2) { # old nymph stage + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + if (vec.ind[3]>=200) { # from old to adult, DD requirement met + current.gen<-vec.ind[1] + if (vec.ind[5]==0) { # non-diapausing adult -- previttelogenic + vec.ind<-c(current.gen,3,0,0,0) + } else { # diapausing + vec.ind<-c(current.gen,5,0,0,1) + } + } else { + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + } + vec.mat[i,]<-vec.ind +} + +# event 4 growing of diapausing adult (unimportant, but still necessary)## +if (vec.ind[2]==5) { + vec.ind[3]<-vec.ind[3]+dd.temp + vec.ind[4]<-vec.ind[4]+1 + vec.mat[i,]<-vec.ind +} + + } # else if it is still alive + +} # end of the individual bug loop + +# find how many died +n.death<-length(death.vec) +if (n.death>0) { +vec.mat<-vec.mat[-death.vec, ]} +# remove record of dead +# find how many new born +n.newborn<-length(birth.vec[,1]) +vec.mat<-rbind(vec.mat,birth.vec) +# update population size for the next day +n<-n-n.death+n.newborn + +# aggregate results by day +tot.pop<-c(tot.pop,n) +s0<-sum(vec.mat[,2]==0) #egg +s1<-sum(vec.mat[,2]==1) # young nymph +s2<-sum(vec.mat[,2]==2) # old nymph +s3<-sum(vec.mat[,2]==3) # previtellogenic +s4<-sum(vec.mat[,2]==4) # vitellogenic +s5<-sum(vec.mat[,2]==5) # diapausing +gen0<-sum(vec.mat[,1]==0) # overwintering adult +gen1<-sum(vec.mat[,1]==1) # first generation +gen2<-sum(vec.mat[,1]==2) # second generation +n.adult<-sum(vec.mat[,2]==3)+sum(vec.mat[,2]==4)+sum(vec.mat[,2]==5) # sum of all adults +gen0.pop[day]<-gen0 # gen.0 pop size +gen1.pop[day]<-gen1 +gen2.pop[day]<-gen2 +S0[day]<-s0 +S1[day]<-s1 +S2[day]<-s2 +S3[day]<-s3 +S4[day]<-s4 +S5[day]<-s5 +g0.adult[day]<-sum(vec.mat[,1]==0) +g1.adult[day]<-sum((vec.mat[,1]==1 & vec.mat[,2]==3) | (vec.mat[,1]==1 & vec.mat[,2]==4) | (vec.mat[,1]==1 & vec.mat[,2]==5)) +g2.adult[day]<-sum((vec.mat[,1]==2 & vec.mat[,2]==3) | (vec.mat[,1]==2 & vec.mat[,2]==4) | (vec.mat[,1]==2 & vec.mat[,2]==5)) + + + +N.newborn[day]<-n.newborn +N.death[day]<-n.death +N.adult[day]<-n.adult +print(c(day,n,n.adult)) +} + +proc.time() - ptm +dd.cum<-cumsum(dd.day) +save(dd.day,dd.cum,S0,S1,S2,S3,S4,S5,N.newborn,N.death,N.adult,tot.pop,gen0.pop,gen1.pop,gen2.pop,g0.adult,g1.adult,g2.adult,file="opt$output") + +