Mercurial > repos > greg > bmsb
comparison bmsb.R @ 22:a5f80d53feee draft
Uploaded
| author | greg |
|---|---|
| date | Tue, 16 Aug 2016 14:17:46 -0400 |
| parents | ce78cd25b873 |
| children | 08cb8c7228c2 |
comparison
equal
deleted
inserted
replaced
| 21:ce78cd25b873 | 22:a5f80d53feee |
|---|---|
| 1 #!/usr/bin/env Rscript | 1 #!/usr/bin/env Rscript |
| 2 | 2 |
| 3 options_list <- list( | 3 options_list <- list( |
| 4 make_option(c("-i", "--input_temperatures"), action="store", help="Input temperatures csv file"), | |
| 4 make_option(c("-s", "--save_log"), action="store_true", default=FALSE, help="Save R logs"), | 5 make_option(c("-s", "--save_log"), action="store_true", default=FALSE, help="Save R logs"), |
| 5 make_option(c("-m", "--output_r_log"), help="Output dataset for R logs"), | 6 make_option(c("-m", "--output_r_log"), action="store", help="Output dataset for R logs"), |
| 6 make_option(c("-o", "--output"), help="Output dataset") | 7 make_option(c("-o", "--output"), action="store", help="Output dataset") |
| 7 ) | 8 ) |
| 8 | 9 |
| 9 parser <- OptionParser(usage="%prog [options] file", options_list) | 10 parser <- OptionParser(usage="%prog [options] file", options_list) |
| 10 args <- parse_args(parser, positional_arguments=TRUE) | 11 args <- parse_args(parser, positional_arguments=TRUE) |
| 11 opt <- args$options | 12 opt <- args$options |
| 12 | 13 |
| 13 | 14 |
| 14 daylength = function(L){ | 15 if (opt$save_log) { |
| 15 # from Forsythe 1995 | 16 rlogf <- file(opt$output_r_log, open="wt") |
| 16 p = 0.8333 | 17 } else { |
| 17 dl <- NULL | 18 # Direct R messaging to a temporary file. |
| 18 for (i in 1:365) { | 19 rlogf <- file("tmpRLog", open="wt") |
| 19 theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (i - 186))) | |
| 20 phi <- asin(0.39795 * cos(theta)) | |
| 21 dl[i] <- 24 - 24/pi * acos((sin(p * pi/180) + sin(L * pi/180) * sin(phi))/(cos(L * pi/180) * cos(phi))) | |
| 22 } | |
| 23 # return a vector of daylength in 365 days | |
| 24 dl | |
| 25 } | 20 } |
| 21 sink(file=rlogf, type=c("output", "message"), append=FALSE, split=FALSE) | |
| 26 | 22 |
| 27 | 23 tempdata <- read.csv(opt$input_temperatures) |
| 28 # source("daylength.R") | 24 save(tempdata, file=opt$output) |
| 29 hourtemp = function(L,date){ | |
| 30 # L = 37.5 specify this in main program | |
| 31 # base development threshold for BMSB | |
| 32 threshold <- 12.7 | |
| 33 # threshold2 <- threshold/24 degree hour accumulation | |
| 34 #expdata <- tempdata[1:365,11:13] # Use daily max, min, mean | |
| 35 # daily minimum | |
| 36 dnp <- expdata[date,2] | |
| 37 # daily maximum | |
| 38 dxp <- expdata[date,3] | |
| 39 dmean <- 0.5 * (dnp + dxp) | |
| 40 #if (dmean>0) { | |
| 41 #dnp <- dnp - k1 * dmean | |
| 42 #dxp <- dxp + k2 * dmean | |
| 43 #} else { | |
| 44 #dnp <- dnp + k1 * dmean | |
| 45 #dxp <- dxp - k2 * dmean | |
| 46 #} | |
| 47 dd <- 0 # initialize degree day accumulation | |
| 48 | |
| 49 if (dxp<threshold) { | |
| 50 dd <- 0 | |
| 51 } else { | |
| 52 # extract daylength data for entire year | |
| 53 dlprofile <- daylength(L) | |
| 54 # initialize hourly temperature | |
| 55 T <- NULL | |
| 56 #initialize degree hour vector | |
| 57 dh <- NULL | |
| 58 # calculate daylength in given date | |
| 59 # date <- 200 | |
| 60 y <- dlprofile[date] | |
| 61 # night length | |
| 62 z <- 24 - y | |
| 63 # lag coefficient | |
| 64 a <- 1.86 | |
| 65 # night coefficient | |
| 66 b <- 2.20 | |
| 67 #import raw data set | |
| 68 #tempdata <- read.csv("tempdata.csv") | |
| 69 # Should be outside function otherwise its redundant | |
| 70 # sunrise time | |
| 71 risetime <- 12 - y/2 | |
| 72 # sunset time | |
| 73 settime <- 12 + y/2 | |
| 74 ts <- (dxp - dnp) * sin(pi * (settime-5)/(y + 2 * a)) + dnp | |
| 75 for (i in 1:24) { | |
| 76 if (i > risetime && i < settime) { | |
| 77 # number of hours after Tmin until sunset | |
| 78 m <- i - 5 | |
| 79 T[i] = (dxp - dnp) * sin(pi * m/(y + 2 * a)) + dnp | |
| 80 if (T[i]<8.4) { | |
| 81 dh[i] <- 0 | |
| 82 } else { | |
| 83 dh[i] <- T[i] - 8.4 | |
| 84 } | |
| 85 } else if (i>settime) { | |
| 86 n <- i - settime | |
| 87 T[i] = dnp + (ts - dnp) * exp(-b * n/z) | |
| 88 if (T[i]<8.4) { | |
| 89 dh[i] <- 0 | |
| 90 } else { | |
| 91 dh[i] <- T[i] - 8.4 | |
| 92 } | |
| 93 } else { | |
| 94 n <- i + 24 - settime | |
| 95 T[i] = dnp + (ts - dnp) * exp(-b * n / z) | |
| 96 if (T[i]<8.4) { | |
| 97 dh[i] <- 0 | |
| 98 } else { | |
| 99 dh[i] <- T[i] - 8.4 | |
| 100 } | |
| 101 } | |
| 102 } | |
| 103 dd <- sum(dh) / 24 | |
| 104 } | |
| 105 return = c(dmean, dd) | |
| 106 return | |
| 107 } | |
| 108 | |
| 109 | |
| 110 mortality.egg = function(temperature) { | |
| 111 if (temperature < 12.7) { | |
| 112 mort.prob = 1 | |
| 113 } else { | |
| 114 # 100% mortality if <12.7 | |
| 115 mort.prob = 0.8 - temperature / 40 | |
| 116 if (mort.prob<0) { | |
| 117 mort.prob = 0.01 | |
| 118 } | |
| 119 } | |
| 120 return = mort.prob | |
| 121 return | |
| 122 } | |
| 123 | |
| 124 | |
| 125 mortality.nymph = function(temperature) { | |
| 126 if (temperature<12.7) { | |
| 127 mort.prob = 0.03 | |
| 128 } else { | |
| 129 # at low temperature | |
| 130 mort.prob = -temperature * 0.0008 + 0.03 | |
| 131 } | |
| 132 return = mort.prob | |
| 133 return | |
| 134 } | |
| 135 | |
| 136 | |
| 137 mortality.adult = function(temperature) { | |
| 138 if (temperature < 12.7) { | |
| 139 mort.prob = 0.002 | |
| 140 } else { | |
| 141 mort.prob = -temperature * 0.0005 + 0.02 | |
| 142 } | |
| 143 return = mort.prob | |
| 144 return | |
| 145 } | |
| 146 | |
| 147 | |
| 148 # model initialization | |
| 149 # TODO: add tool params for the following options. | |
| 150 # start with 1000 individuals | |
| 151 n <- 1000 | |
| 152 # Generation, Stage, DD, T, Diapause | |
| 153 vec.ini <- c(0,3,0,0,0) | |
| 154 # overwintering, previttelogenic, DD = 0, T = 0, no-diapause | |
| 155 vec.mat <- rep(vec.ini,n) | |
| 156 # complete matrix for the population | |
| 157 vec.mat <- t(matrix(vec.mat, nrow = 5)) | |
| 158 # latitude for Asheville NC | |
| 159 L <- 35.58 | |
| 160 # complete photoperiod profile in a year, requires daylength function | |
| 161 ph.p <- daylength(L) | |
| 162 | |
| 163 # load temperature data@location/year | |
| 164 load("asheville2014.Rdat") | |
| 165 | |
| 166 # time series of population size | |
| 167 tot.pop <- NULL | |
| 168 | |
| 169 # gen.0 pop size | |
| 170 gen0.pop <- rep(0, 365) | |
| 171 gen1.pop <- rep(0, 365) | |
| 172 gen2.pop <- rep(0, 365) | |
| 173 | |
| 174 # aggregate | |
| 175 S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, 365) | |
| 176 g0.adult <- g1.adult <- g2.adult <- rep(0, 365) | |
| 177 | |
| 178 # birth death adults | |
| 179 N.newborn <- N.death <- N.adult <- rep(0, 365) | |
| 180 | |
| 181 # degree-day accumulation | |
| 182 dd.day <- rep(0, 365) | |
| 183 | |
| 184 # start tick | |
| 185 ptm <- proc.time() | |
| 186 | |
| 187 for (n.sim in 1:1000) { | |
| 188 # loop through 1000 simulations | |
| 189 for (day in 1:365) { | |
| 190 # loop through 365 day/yr | |
| 191 photoperiod <- ph.p[day] | |
| 192 # photoperiod in the day | |
| 193 temp.profile <- hourtemp(L,day) | |
| 194 # temperature profile | |
| 195 mean.temp <- temp.profile[1] | |
| 196 # mean temp | |
| 197 dd.temp <- temp.profile[2] | |
| 198 # degree-day | |
| 199 dd.day[day] <- dd.temp | |
| 200 death.vec <- NULL | |
| 201 # trash bin for death | |
| 202 birth.vec <- NULL | |
| 203 # record new born | |
| 204 for (i in 1:n) { | |
| 205 # loop through all individual | |
| 206 vec.ind <- vec.mat[i,] | |
| 207 # find individual record | |
| 208 # first of all, still alive? | |
| 209 if (vec.ind[2] == 0) { | |
| 210 # egg | |
| 211 death.prob = mortality.egg(mean.temp) | |
| 212 } else if (vec.ind[2] == 1 | vec.ind[2] == 2) { | |
| 213 # nymph | |
| 214 death.prob = mortality.nymph(mean.temp) | |
| 215 } else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) { | |
| 216 # for adult | |
| 217 death.prob = mortality.adult(mean.temp) | |
| 218 } | |
| 219 u.d <- runif(1) | |
| 220 if (u.d<death.prob) { | |
| 221 death.vec <- c(death.vec,i) | |
| 222 } else { | |
| 223 # aggregrate index of dead bug | |
| 224 # event 1 end of diapause | |
| 225 if (vec.ind[1] == 0 && vec.ind[2] == 3) { | |
| 226 # overwintering adult (previttelogenic) | |
| 227 if (photoperiod>13.5 && vec.ind[3] > 68 && day < 180) { | |
| 228 # add 68C to become fully reproductively matured | |
| 229 # transfer to vittelogenic | |
| 230 vec.ind <- c(0,4,0,0,0) | |
| 231 vec.mat[i,] <- vec.ind | |
| 232 } else { | |
| 233 # add to DD | |
| 234 vec.ind[3] <- vec.ind[3] + dd.temp | |
| 235 vec.ind[4] <- vec.ind[4] + 1 # add 1 day in current stage | |
| 236 vec.mat[i,] <- vec.ind | |
| 237 } | |
| 238 } | |
| 239 if (vec.ind[1]!=0 && vec.ind[2] == 3) { | |
| 240 # NOT overwintering adult (previttelogenic) | |
| 241 current.gen <- vec.ind[1] | |
| 242 if (vec.ind[3]>68) { | |
| 243 # add 68C to become fully reproductively matured | |
| 244 # transfer to vittelogenic | |
| 245 vec.ind <- c(current.gen,4,0,0,0) | |
| 246 vec.mat[i,] <- vec.ind | |
| 247 } else { | |
| 248 # add to DD | |
| 249 vec.ind[3] <- vec.ind[3] + dd.temp | |
| 250 # add 1 day in current stage | |
| 251 vec.ind[4] <- vec.ind[4] + 1 | |
| 252 vec.mat[i,] <- vec.ind | |
| 253 } | |
| 254 } | |
| 255 # event 2 oviposition -- where population dynamics comes from | |
| 256 # vittelogenic stage, overwintering generation | |
| 257 if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp>10) { | |
| 258 if (vec.ind[4] == 0) { | |
| 259 # just turned in vittelogenic stage | |
| 260 n.birth = round(runif(1,10,20)) | |
| 261 } else { | |
| 262 p.birth = 1/4/75 | |
| 263 # prob of birth | |
| 264 u1 <- runif(1) | |
| 265 if (u1<p.birth) { | |
| 266 n.birth = n.birth | |
| 267 } | |
| 268 } | |
| 269 # add to DD | |
| 270 vec.ind[3] <- vec.ind[3] + dd.temp | |
| 271 # add 1 day in current stage | |
| 272 vec.ind[4] <- vec.ind[4] + 1 | |
| 273 vec.mat[i,] <- vec.ind | |
| 274 if (n.birth>0) { | |
| 275 # add new birth -- might be in different generations | |
| 276 # generation + 1 | |
| 277 new.gen <- vec.ind[1] + 1 | |
| 278 # egg profile | |
| 279 new.ind <- c(new.gen,0,0,0,0) | |
| 280 new.vec <- rep(new.ind,n.birth) | |
| 281 # update batch of egg profile | |
| 282 new.vec <- t(matrix(new.vec,nrow = 5)) | |
| 283 # group with total eggs laid in that day | |
| 284 birth.vec <- rbind(birth.vec,new.vec) | |
| 285 } | |
| 286 } | |
| 287 # event 2 oviposition -- for gen 1. | |
| 288 if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp>12.5 && day<222) { | |
| 289 # vittelogenic stage, 1st generation | |
| 290 if (vec.ind[4] == 0) { | |
| 291 # just turned in vittelogenic stage | |
| 292 n.birth = round(runif(1,10,20)) | |
| 293 } else { | |
| 294 p.birth = 1/4/75 | |
| 295 u1 <- runif(1) | |
| 296 if (u1<p.birth) { | |
| 297 n.birth = n.birth | |
| 298 } | |
| 299 } | |
| 300 # add to DD | |
| 301 vec.ind[3] <- vec.ind[3] + dd.temp | |
| 302 # add 1 day in current stage | |
| 303 vec.ind[4] <- vec.ind[4] + 1 | |
| 304 vec.mat[i,] <- vec.ind | |
| 305 if (n.birth>0) { | |
| 306 # add new birth -- might be in different generations | |
| 307 # generation + 1 | |
| 308 new.gen <- vec.ind[1] + 1 | |
| 309 # egg profile | |
| 310 new.ind <- c(new.gen,0,0,0,0) | |
| 311 new.vec <- rep(new.ind,n.birth) | |
| 312 # update batch of egg profile | |
| 313 new.vec <- t(matrix(new.vec,nrow = 5)) | |
| 314 # group with total eggs laid in that day | |
| 315 birth.vec <- rbind(birth.vec,new.vec) | |
| 316 } | |
| 317 } | |
| 318 # event 3 development (with diapause determination) | |
| 319 # event 3.1 egg development to young nymph (vec.ind[2] = 0 -> egg) | |
| 320 # egg stage | |
| 321 if (vec.ind[2] == 0) { | |
| 322 # add to DD | |
| 323 vec.ind[3] <- vec.ind[3] + dd.temp | |
| 324 # from egg to young nymph | |
| 325 if (vec.ind[3] >= 53.30 && -0.9843 * dd.temp + 33.438>0) { | |
| 326 current.gen <- vec.ind[1] | |
| 327 # transfer to young nym stage | |
| 328 vec.ind <- c(current.gen,1,0,0,0) | |
| 329 } else { | |
| 330 # add 1 day in current stage | |
| 331 vec.ind[4] <- vec.ind[4] + 1 | |
| 332 } | |
| 333 vec.mat[i,] <- vec.ind | |
| 334 } | |
| 335 # event 3.2 young nymph to old nymph (vec.ind[2] = 1 -> young nymph: determines diapause) | |
| 336 # young nymph stage | |
| 337 if (vec.ind[2] == 1) { | |
| 338 # add to DD | |
| 339 vec.ind[3] <- vec.ind[3] + dd.temp | |
| 340 # from young to old nymph | |
| 341 if (vec.ind[3] >= 537/2 && -0.45 * dd.temp + 18>0) { | |
| 342 current.gen <- vec.ind[1] | |
| 343 # transfer to old nym stage | |
| 344 vec.ind <- c(current.gen,2,0,0,0) | |
| 345 # prepare for diapausing | |
| 346 if (photoperiod<13.5 && day > 180) { | |
| 347 vec.ind[5] <- 1 | |
| 348 } | |
| 349 } else { | |
| 350 # add 1 day in current stage | |
| 351 vec.ind[4] <- vec.ind[4] + 1 | |
| 352 } | |
| 353 vec.mat[i,] <- vec.ind | |
| 354 } | |
| 355 # event 3.3 old nymph to adult: previttelogenic or diapausing? | |
| 356 # old nymph stage | |
| 357 if (vec.ind[2] == 2) { | |
| 358 # add to DD | |
| 359 vec.ind[3] <- vec.ind[3] + dd.temp | |
| 360 # from old to adult | |
| 361 if (vec.ind[3] >= 537/2 && -0.50 * dd.temp + 22>0) { | |
| 362 current.gen <- vec.ind[1] | |
| 363 # non-diapausing adult -- previttelogenic | |
| 364 if (vec.ind[5] == 0) { | |
| 365 vec.ind <- c(current.gen,3,0,0,0) | |
| 366 # diapausing | |
| 367 } else { | |
| 368 vec.ind <- c(current.gen,5,0,0,1) | |
| 369 } | |
| 370 } else { | |
| 371 # add 1 day in current stage | |
| 372 vec.ind[4] <- vec.ind[4] + 1 | |
| 373 } | |
| 374 vec.mat[i,] <- vec.ind | |
| 375 } | |
| 376 # event 4 growing of diapausing adult (unimportant, but still necessary)## | |
| 377 if (vec.ind[2] == 5) { | |
| 378 vec.ind[3] <- vec.ind[3] + dd.temp | |
| 379 vec.ind[4] <- vec.ind[4] + 1 | |
| 380 vec.mat[i,] <- vec.ind | |
| 381 } | |
| 382 } # else if it is still alive | |
| 383 } # end of the individual bug loop | |
| 384 # find how many died | |
| 385 n.death <- length(death.vec) | |
| 386 if (n.death>0) { | |
| 387 vec.mat <- vec.mat[-death.vec, ] | |
| 388 } | |
| 389 # remove record of dead | |
| 390 # find how many new born | |
| 391 n.newborn <- length(birth.vec[,1]) | |
| 392 vec.mat <- rbind(vec.mat,birth.vec) | |
| 393 # update population size for the next day | |
| 394 n <- n-n.death + n.newborn | |
| 395 | |
| 396 # aggregate results by day | |
| 397 tot.pop <- c(tot.pop,n) | |
| 398 # egg | |
| 399 s0 <- sum(vec.mat[,2] == 0) | |
| 400 # young nymph | |
| 401 s1 <- sum(vec.mat[,2] == 1) | |
| 402 # old nymph | |
| 403 s2 <- sum(vec.mat[,2] == 2) | |
| 404 # previtellogenic | |
| 405 s3 <- sum(vec.mat[,2] == 3) | |
| 406 # vitellogenic | |
| 407 s4 <- sum(vec.mat[,2] == 4) | |
| 408 # diapausing | |
| 409 s5 <- sum(vec.mat[,2] == 5) | |
| 410 # overwintering adult | |
| 411 gen0 <- sum(vec.mat[,1] == 0) | |
| 412 # first generation | |
| 413 gen1 <- sum(vec.mat[,1] == 1) | |
| 414 # second generation | |
| 415 gen2 <- sum(vec.mat[,1] == 2) | |
| 416 # sum of all adults | |
| 417 n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5) | |
| 418 # gen.0 pop size | |
| 419 gen0.pop[day] <- gen0 | |
| 420 gen1.pop[day] <- gen1 | |
| 421 gen2.pop[day] <- gen2 | |
| 422 S0[day] <- s0 | |
| 423 S1[day] <- s1 | |
| 424 S2[day] <- s2 | |
| 425 S3[day] <- s3 | |
| 426 S4[day] <- s4 | |
| 427 S5[day] <- s5 | |
| 428 g0.adult[day] <- sum(vec.mat[,1] == 0) | |
| 429 g1.adult[day] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5)) | |
| 430 g2.adult[day] <- sum((vec.mat[,1] == 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5)) | |
| 431 N.newborn[day] <- n.newborn | |
| 432 N.death[day] <- n.death | |
| 433 N.adult[day] <- n.adult | |
| 434 } | |
| 435 #print(n.sim) | |
| 436 } | |
| 437 | |
| 438 proc.time() - ptm | |
| 439 dd.cum <- cumsum(dd.day) | |
| 440 save(dd.day, dd.cum, S0, S1, S2, S3, S4, S5, N.newborn, N.death, N.adult, tot.pop, gen0.pop, gen1.pop, gen2.pop, g0.adult, g1.adult, g2.adult, file=opt$output) |
